The estimate for mean values on prime numbers relative to 4/p=1/n1+1/n2+1/n3

被引:0
作者
Jia ChaoHua [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Math, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Diophantine equation; prime number; mean value;
D O I
10.1007/s11425-011-4348-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If n is a positive integer, let f(n) denote the number of positive integer solutions (n (1), n (2), n (3)) of the Diophantine equation 4/n = 1/n(1) + 1/n(2) + 1/n(3) For the prime number p, f(p) can be split into f (1)(p) + f (2)(p), where f (i) (p) (i = 1, 2) counts those solutions with exactly i of denominators n (1), n (2), n (3) divisible by p. In this paper, we shall study the estimate for mean values Sigma(p<x) f(i)(p), i = 1,2, where p denotes the prime number.
引用
收藏
页码:465 / 474
页数:10
相关论文
共 7 条
  • [1] [Anonymous], ARXIV11075394V1MATHN
  • [2] Elsholtz C, ARXIV11071010V3MATHN
  • [3] Hua L K, 1995, INTRO NUMBER THEORY
  • [4] Jia C H, ARXIV11076039V1MATHN
  • [5] SHIU P, 1980, J REINE ANGEW MATH, V313, P161
  • [6] Tao T, ARXIV11071010V2MATHN
  • [7] A PROBLEM OF ERDOS, STRAUS AND SCHINZEL
    VAUGHAN, RC
    [J]. MATHEMATIKA, 1970, 17 (34) : 193 - &