On algebraic and geometric dimensions for groups with torsion

被引:37
作者
Brady, N [1 ]
Leary, IJ
Nucinkis, BEA
机构
[1] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
[2] Univ Southampton, Fac Math Studies, Southampton SO17 1BJ, Hants, England
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2001年 / 64卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1112/S002461070100240X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Various notions of dimension for discrete groups are compared. A group is exhibited that acts with finite stabilizers on an acyclic 2-complex in such a way that the fixed point subcomplex for any non-trivial finite subgroup is contractible, but such that the group does not admit any such action on a contractible 2-complex. This group affords a counterexample to a natural generalization of the Eilenberg-Ganea conjecture.
引用
收藏
页码:489 / 500
页数:12
相关论文
共 33 条
[1]  
[Anonymous], 1997, 3 DIMENSIONAL GEOMET
[2]  
Baum P., 1994, Contemp. Math., V167, P240, DOI [DOI 10.1090/CONM/167/1292018, 10.1090/conm/167/1292018]
[3]   Morse theory and finiteness properties of groups [J].
Bestvina, M ;
Brady, N .
INVENTIONES MATHEMATICAE, 1997, 129 (03) :445-470
[4]  
BESTVINA M, 1993, LONDON MATH SOC LECT, V181, P19
[5]  
Bieri R., 1976, QUEEN MARY COLL MATH
[6]  
BOGLEY WA, 1993, LOND MATH S, V197, P309
[7]  
Bredon G. E., 1967, LECT NOTES MATH, V34
[8]  
Bridson M. R., 2013, Metric spaces of non-positive curvature, V319
[9]  
BROWN KS, 1982, GRADUATE TEXTS MATH, V87
[10]  
Davis M. W., 1994, GEOMETRY COHOMOLOGY, V252, P108