Deep Learning for Autonomous Driving

被引:1
|
作者
Burleigh, Nicholas [1 ]
King, Jordan [1 ]
Braunl, Thomas [1 ]
机构
[1] Univ Western Australia, Elect Engn, Perth, WA, Australia
来源
2019 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA) | 2019年
关键词
deep learning; autonomous driving; driverless vehicles; TensorFlow; lane keeping; traffic sign recognition;
D O I
10.1109/dicta47822.2019.8945818
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we look at Deep Learning methods using TensorFlow for autonomous driving tasks. Using scale model vehicles in a traffic scenario similar to the Audi Autonomous Driving Cup and the Carolo Cup, we successfully used Deep Learning stacks for the two independent tasks of lane keeping and traffic sign recognition.
引用
收藏
页码:105 / 112
页数:8
相关论文
共 50 条
  • [1] Deep Federated Learning for Autonomous Driving
    Anh Nguyen
    Tuong Do
    Minh Tran
    Nguyen, Binh X.
    Chien Duong
    Tu Phan
    Tjiputra, Erman
    Tran, Quang D.
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 1824 - 1830
  • [2] Deep Reinforcement Learning for Autonomous Driving: A Survey
    Kiran, B. Ravi
    Sobh, Ibrahim
    Talpaert, Victor
    Mannion, Patrick
    Al Sallab, Ahmad A.
    Yogamani, Senthil
    Perez, Patrick
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (06) : 4909 - 4926
  • [3] A survey of deep learning techniques for autonomous driving
    Grigorescu, Sorin
    Trasnea, Bogdan
    Cocias, Tiberiu
    Macesanu, Gigel
    JOURNAL OF FIELD ROBOTICS, 2020, 37 (03) : 362 - 386
  • [4] Deep Reinforcement Learning with Intervention Module for Autonomous Driving
    Chi, Huicong
    Wang, Ping
    Wang, Chao
    Wang, Xinhong
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [5] A DEEP LEARNING APPROACH TO AUTONOMOUS DRIVING IN URBAN ENVIRONMENT
    Diaconescu, Paul
    Neagoe, Victor-Emil
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2021, 83 (03): : 143 - 154
  • [6] Deep Surrogate Q-Learning for Autonomous Driving
    Kalweit, Maria
    Kalweit, Gabriel
    Werling, Moritz
    Boedecker, Joschka
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 1578 - 1584
  • [7] Learning a Deep Motion Planning Model for Autonomous Driving
    Song, Sheng
    Hu, Xuemin
    Yu, Jin
    Bai, Liyun
    Chen, Long
    2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 1137 - 1142
  • [8] Dynamic Input for Deep Reinforcement Learning in Autonomous Driving
    Huegle, Maria
    Kalweit, Gabriel
    Mirchevska, Branka
    Werling, Moritz
    Boedecker, Joschka
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 7566 - 7573
  • [9] Deep Reinforcement Learning with Noisy Exploration for Autonomous Driving
    Li, Ruyang
    Zhang, Yaqiang
    Zhao, Yaqian
    Wei, Hui
    Xu, Zhe
    Zhao, Kun
    PROCEEDINGS OF 2022 THE 6TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND SOFT COMPUTING, ICMLSC 20222, 2022, : 8 - 14
  • [10] Deep Learning Approaches for Autonomous Driving a Comprehensive Survey
    Vasanthamma
    Dubey, Manoj
    Kantharaju, Kanaparthi
    Kollipara, Naga Venkateshwara Rao
    Sumalatha, M.
    METALLURGICAL & MATERIALS ENGINEERING, 2025, 31 (01) : 346 - 354