Deep Learning Unlocks X-ray Microtomography Segmentation of Multiclass Microdamage in Heterogeneous Materials

被引:19
作者
Kopp, Reed [1 ]
Joseph, Joshua [2 ]
Ni, Xinchen [1 ]
Roy, Nicholas [1 ,2 ]
Wardle, Brian L. [1 ,3 ]
机构
[1] MIT, Dept Aeronaut & Astronaut, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, MIT Quest Intelligence, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Dept Mech Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
3D multiclass damage; deep learning; heterogeneous materials; machine learning; material characterization; MATERIALS SCIENCE; COMPOSITES; DESIGN; DAMAGE; STRENGTH;
D O I
10.1002/adma.202107817
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Four-dimensional quantitative characterization of heterogeneous materials using in situ synchrotron radiation computed tomography can reveal 3D sub-micrometer features, particularly damage, evolving under load, leading to improved materials. However, dataset size and complexity increasingly require time-intensive and subjective semi-automatic segmentations. Here, the first deep learning (DL) convolutional neural network (CNN) segmentation of multiclass microscale damage in heterogeneous bulk materials is presented, teaching on advanced aerospace-grade composite damage using approximate to 65 000 (trained) human-segmented tomograms. The trained CNN machine segments complex and sparse (<<1% of volume) composite damage classes to approximate to 99.99% agreement, unlocking both objectivity and efficiency, with nearly 100% of the human time eliminated, which traditional rule-based algorithms do not approach. The trained machine is found to perform as well or better than the human due to "machine-discovered" human segmentation error, with machine improvements manifesting primarily as new damage discovery and segmentation augmentation/extension in artifact-rich tomograms. Interrogating a high-level network hyperparametric space on two material configurations, DL is found to be a disruptive approach to quantitative structure-property characterization, enabling high-throughput knowledge creation (accelerated by two orders of magnitude) via generalizable, ultrahigh-resolution feature segmentation.
引用
收藏
页数:15
相关论文
共 88 条
[41]   Recent advances in fiber/matrix interphase engineering for polymer composites [J].
Karger-Kocsis, Jozsef ;
Mahmood, Haroon ;
Pegoretti, Alessandro .
PROGRESS IN MATERIALS SCIENCE, 2015, 73 :1-43
[42]   Theory-Guided Data Science: A New Paradigm for Scientific Discovery from Data [J].
Karpatne, Anuj ;
Atluri, Gowtham ;
Faghmous, James H. ;
Steinbach, Michael ;
Banerjee, Arindam ;
Ganguly, Auroop ;
Shekhar, Shashi ;
Samatova, Nagiza ;
Kumar, Vipin .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (10) :2318-2331
[43]   Composites with carbon nanotubes and graphene: An outlook [J].
Kinloch, Ian A. ;
Suhr, Jonghwan ;
Lou, Jun ;
Young, Robert J. ;
Ajayan, Pulickel M. .
SCIENCE, 2018, 362 (6414) :547-553
[44]  
Kopp R., XRAY MICROCOMPUTED T
[45]  
Kopp R., 2021, DRYAD, DOI [10.5061/dryad.ffbg79cwb, DOI 10.5061/DRYAD.FFBG79CWB]
[46]   Advanced Materials for Next-Generation Spacecraft [J].
Levchenko, Igor ;
Bazaka, Kateryna ;
Belmonte, Thierry ;
Keidar, Michael ;
Xu, Shuyan .
ADVANCED MATERIALS, 2018, 30 (50)
[47]   High strength in combination with high toughness in robust and sustainable polymeric materials [J].
Liao, Xiaojian ;
Dulle, Martin ;
de Souza e Silva, Juliana Martins ;
Wehrspohn, Ralf B. ;
Agarwal, Seema ;
Foerster, Stephan ;
Hou, Haoqing ;
Smith, Paul ;
Greiner, Andreas .
SCIENCE, 2019, 366 (6471) :1376-+
[48]   Multiscale Modeling of Composite Materials: a Roadmap Towards Virtual Testing [J].
LLorca, J. ;
Gonzalez, C. ;
Molina-Aldareguia, J. M. ;
Segurado, J. ;
Seltzer, R. ;
Sket, F. ;
Rodriguez, M. ;
Sadaba, S. ;
Munoz, R. ;
Canal, L. P. .
ADVANCED MATERIALS, 2011, 23 (44) :5130-5147
[49]  
Long J, 2015, PROC CVPR IEEE, P3431, DOI 10.1109/CVPR.2015.7298965
[50]   Accelerating advanced-materials commercialization [J].
Maine, Elicia ;
Seegopaul, Purnesh .
NATURE MATERIALS, 2016, 15 (05) :487-491