Plasma edge and plasma-wall interaction modelling: Lessons learned from metallic devices

被引:25
|
作者
Wiesen, S. [1 ,36 ]
Groth, M. [2 ,8 ]
Wischmeier, M. [3 ,56 ]
Brezinsek, S. [1 ,36 ]
Jarvinen, A. [4 ,8 ]
Reimold, F. [1 ]
Aho-Mantila, L. [5 ,101 ]
Abhangi, M. [41 ]
Abreu, P. [47 ]
Aftanas, M. [44 ]
Afzal, M. [10 ]
Aggarwal, K. M. [27 ]
Aho-Mantila, L. [5 ,101 ]
Ahonen, E. [8 ]
Aints, M. [97 ]
Airila, M. [101 ]
Albanese, R. [95 ]
Alegre, D. [53 ]
Alessi, E. [40 ]
Aleynikov, P. [49 ]
Alfier, A. [14 ]
Alkseev, A. [62 ]
Allan, P. [10 ]
Almaviva, S. [86 ]
Alonso, A. [53 ]
Alper, B. [10 ]
Alsworth, I. [10 ]
Alves, D. [47 ]
Ambrosino, G. [95 ]
Ambrosino, R. [96 ]
Amosov, V. [79 ]
Andersson, F. [18 ]
Andersson Sunden, E. [22 ]
Angelone, M. [81 ]
Anghel, A. [76 ]
Anghel, M. [75 ]
Angioni, C. [56 ]
Appel, L. [10 ]
Apruzzese, G. [81 ]
Arena, P. [28 ]
Ariola, M. [96 ]
Arnichand, H. [11 ]
Arnoux, G. [10 ]
Arshad, S. [37 ]
Ash, A. [10 ]
Asp, E. [22 ]
Asunta, O. [8 ]
Atanasiu, C. V. [76 ]
Austin, Y. [10 ]
Avotina, L. [94 ]
机构
[1] Forschungszentrum Julich GmbH, Inst Energ & Klimaforschung Plasmaphys, D-52425 Julich, Germany
[2] Aalto Univ, Espoo, Finland
[3] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[4] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[5] VTT Tech Res Ctr Finland Ltd, POB 1000, FI-02044 Espoo, Finland
[6] JET, Culham Sci Ctr, EUROfus Consortium, Abingdon OX14 3DB, Oxon, England
[7] MIT, Plasma Sci & Fusion Ctr, Cambridge, MA 02139 USA
[8] Aalto Univ, FIN-00076 Aalto, Finland
[9] BCS, Barcelona, Spain
[10] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[11] IRFM, CEA, F-13108 St Paul Les Durance, France
[12] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[13] Consorzio CREATE, I-80125 Naples, Italy
[14] Consorzio RFX, I-35127 Padua, Italy
[15] Daegu Univ, Gyongsan 712174, Gyeongbuk, South Korea
[16] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain
[17] Univ Ghent, Dept Appl Phys, B-9000 Ghent, Belgium
[18] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[19] Univ Cagliari, Dept Elect & Elect Engn, I-09123 Cagliari, Italy
[20] Comenius Univ, Fac Math Phys & Informat, Dept Expt Phys, Bratislava 84248, Slovakia
[21] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland
[22] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[23] Lund Univ, Dept Phys, SE-22100 Lund, Sweden
[24] KTH, SCI, Dept Phys, SE-10691 Stockholm, Sweden
[25] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[26] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[27] Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland
[28] Univ Catania, Dipartimento Ingn Elettr Elettr & Sistemi, I-95125 Catania, Italy
[29] Dublin City Univ, Dublin, Ireland
[30] CRPP, EPFL, CH-1015 Lausanne, Switzerland
[31] CNRS, UMR 7648, Ecole Polytech, F-91128 Palaiseau, France
[32] EUROfus Programme Management Unit, D-85748 Garching, Germany
[33] Culham Sci Ctr, EUROfus Programme Management Unit, Abingdon OX14 3DB, Oxon, England
[34] European Commiss, B-1049 Brussels, Belgium
[35] FOM Inst DIFFER, NL-3430 BE Nieuwegein, Netherlands
[36] Forsch Zentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[37] Fus Energy Joint Undertaking, Barcelona 08019, Spain
[38] KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden
[39] Gen Atom, San Diego, CA 85608 USA
[40] IFP CNR, I-20125 Milan, Italy
[41] Inst Plasma Res, Gandhinagar 382428G, Gujarat, India
[42] Bulgarian Acad Sci, Inst Elect, BU-1784 Sofia, Bulgaria
[43] Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland
[44] Inst Plasma Phys AS CR, Prague 182 00 8, Czech Republic
[45] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[46] Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, Brazil
[47] Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal
[48] Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[49] ITER Org, F-13067 St Paul Les Durance, France
[50] Naka Fus Res Estab, Japan Atom Energy Agcy, Naka 3110913, Ibaraki, Japan
关键词
SCRAPE-OFF LAYER; ALCATOR C-MOD; DIVERTOR PHYSICS; TRANSPORT; CODE; SIMULATION;
D O I
10.1016/j.nme.2017.03.033
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Robust power exhaust schemes employing impurity seeding are needed for target operational scenarios in present day tokamak devices with metallic plasma-facing components (PFCs). For an electricity-producing fusion power plant at power density P-sep/R > 15 MW/m divertor detachment is a requirement for heat load mitigation. 2D plasma edge transport codes like the SOLPS code as well as plasma-wall interaction (PWI) codes are key to disentangle relevant physical processes in power and particle exhaust. With increased quantitative credibility in such codes more realistic and physically sound estimates of the life-time expectations and performance of metallic PFCs can be accomplished for divertor conditions relevant for ITER and DEMO. An overview is given on the recent progress of plasma edge and PWI modelling activities for (carbon-free) metallic devices, that include results from JET with the ITER-like wall, ASDEX Upgrade and Alcator C-mod. It is observed that metallic devices offer an opportunity to progress the understanding of underlying plasma physics processes in the edge. The validation of models can be substantially improved by eliminating carbon from the experiment as well as from the numerical system with reduced degrees of freedom as no chemical sputtering from amorphous carbon layers and no carbon or hydro-carbon transport are present. With the absence of carbon as the primary plasma impurity and given the fact that the physics of the PWI at metallic walls is less complex it is possible to isolate the crucial plasma physics processes relevant for particle and power exhaust. For a reliable 2D dissipative plasma exhaust model these are: cross-field drifts, complete kinetic neutral physics, geometry effects (including main-chamber, divertor and sub-divertor structures), SOL transport reflecting also the non-diffusive nature of anomalous transport, as well as transport within the pedestal region in case of significant edge impurity radiation affecting pedestal pressure and hence P-sep. (C) 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
引用
收藏
页码:3 / 17
页数:15
相关论文
共 50 条
  • [41] Plasma-wall transition in the quasi-neutral region of collisional and stationary plasmas in a magnetic field enclosed by totally absorbing walls
    Fehling, Marc
    CONTRIBUTIONS TO PLASMA PHYSICS, 2017, 57 (04) : 151 - 166
  • [42] Interaction between the core and the edge for ion cyclotron resonance heating based on artificial absorption plasma model
    Liu, Zhuoqi
    Zhang, Jiahui
    Wu, Kaibang
    Zhang, Xinjun
    Qin, Chengming
    Meng, Feng
    Wang, Zhengxiong
    PLASMA SCIENCE & TECHNOLOGY, 2024, 26 (10)
  • [43] On the spatial structure of solitary radial electric field at the plasma edge in toroidal confinement devices
    Itoh, K.
    Itoh, S-I
    Kamiya, K.
    Kasuya, N.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (07)
  • [44] 3D fluid modelling of the edge plasma by means of a Monte Carlo technique
    Feng, Y
    Sardei, F
    Kisslinger, J
    JOURNAL OF NUCLEAR MATERIALS, 1999, 266 : 812 - 818
  • [45] Tokamak Edge Plasma Turbulence Interaction with Magnetic X-Point in 3D Global Simulations
    Galassi, Davide
    Ciraolo, Guido
    Tamain, Patrick
    Bufferand, Hugo
    Ghendrih, Philippe
    Nace, Nicolas
    Serre, Eric
    FLUIDS, 2019, 4 (01):
  • [46] Critical comparison of interfacial boundary conditions in modelling plasma-liquid interaction
    Heirman, Pepijn
    Bogaerts, Annemie
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2025, 58 (08)
  • [47] Continuum kinetic modelling of cross-separatrix plasma transport in a tokamak edge including self-consistent electric fields
    Dorf, Mikhail
    Dorr, Milo
    CONTRIBUTIONS TO PLASMA PHYSICS, 2018, 58 (6-8) : 434 - 444
  • [48] The Fredholm Alternative with Application to the Derivation of Hilbert Expansion Based Fluid Models for Plasma Edge Modelling
    Maes, Vince
    Dekeyser, Wouter
    Koellermeier, Julian
    Baelmans, Martine
    Samaey, Giovanni
    32ND INTERNATIONAL SYMPOSIUM ON RAREFIED GAS DYNAMICS, 2024, 2996
  • [49] Particle-in-Cell modelling of laser-plasma interaction using Fourier decomposition
    Lifschitz, A. F.
    Davoine, X.
    Lefebvre, E.
    Faure, J.
    Rechatin, C.
    Malka, V.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (05) : 1803 - 1814
  • [50] Overview of progress in European medium sized tokamaks towards an integrated plasma-edge/wall solution
    Meyer, H.
    Eich, T.
    Beurskens, M.
    Coda, S.
    Hakola, A.
    Martin, P.
    Adamek, J.
    Agostini, M.
    Aguiam, D.
    Ahn, J.
    Aho-Mantila, L.
    Akers, R.
    Albanese, R.
    Aledda, R.
    Alessi, E.
    Allan, S.
    Alves, D.
    Ambrosino, R.
    Amicucci, L.
    Anand, H.
    Anastassiou, G.
    Andrebe, Y.
    Angioni, C.
    Apruzzese, G.
    Ariola, M.
    Arnichand, H.
    Arter, W.
    Baciero, A.
    Barnes, M.
    Barrera, L.
    Behn, R.
    Bencze, A.
    Bernardo, J.
    Bernert, M.
    Bettini, P.
    Bilkova, P.
    Bin, W.
    Birkenmeier, G.
    Bizarro, J. P. S.
    Blanchard, P.
    Blanken, T.
    Bluteau, M.
    Bobkov, V.
    Bogar, O.
    Boehm, P.
    Bolzonella, T.
    Boncagni, L.
    Botrugno, A.
    Bottereau, C.
    Bouquey, F.
    NUCLEAR FUSION, 2017, 57 (10)