Homogeneous cosmologies from the quasi-Maxwell formalism -: art. no. 082501

被引:3
作者
Costa, J [1 ]
Natário, J [1 ]
机构
[1] Univ Tecn Lisboa, Dept Math, Inst Super Tecn, Lisbon, Portugal
关键词
D O I
10.1063/1.2009587
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how to use the quasi-Maxwell formalism to obtain solutions of Einstein's field equations corresponding to homogeneous cosmologies -namely Einstein's universe, Godel's universe, and the Ozsvath-Farnsworth-Kerr class I solutions - written in frames for which the associated observers are stationary. (c) 2005 American Institute of Physics.
引用
收藏
页数:17
相关论文
共 50 条
[21]   Asymptotic behavior of Cardassian cosmologies with exponential potentials -: art. no. 123516 [J].
Lazkoz, R ;
León, G .
PHYSICAL REVIEW D, 2005, 71 (12)
[22]   Current and future supernova constraints on decaying Λ cosmologies -: art. no. 043502 [J].
Alcaniz, JS ;
Maia, JMF .
PHYSICAL REVIEW D, 2003, 67 (04)
[23]   General formalism for inhomogeneous random graphs -: art. no. 066121 [J].
Söderberg, B .
PHYSICAL REVIEW E, 2002, 66 (06) :6
[24]   Hydrodynamic Maxwell demon in granular systems -: art. no. 011305 [J].
Brey, JJ ;
Moreno, F ;
García-Rojo, R ;
Ruiz-Montero, MJ .
PHYSICAL REVIEW E, 2002, 65 (01) :1-011305
[25]   Tunneling in Λ decaying cosmologies and the cosmological constant problem -: art. no. 063514. [J].
Jafarizadeh, MA ;
Darabi, F ;
Rezaei-Aghdam, A ;
Rastegar, AR .
PHYSICAL REVIEW D, 1999, 60 (06)
[26]   M-theory cosmologies from singular Calabi-Yau compactifications -: art. no. 012 [J].
Järv, L ;
Mohaupt, T ;
Saueressig, F .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2004, (02) :205-244
[27]   Neutralino projector formalism for complex supersymmetry parameters -: art. no. 055007 [J].
Gounaris, GJ ;
Le Mouël, C .
PHYSICAL REVIEW D, 2002, 66 (05)
[28]   Length uncertainty in a gravity's rainbow formalism -: art. no. 044019 [J].
Galán, P ;
Marugán, GAM .
PHYSICAL REVIEW D, 2005, 72 (04) :1-13
[29]   Helicity formalism for spin-2 particles -: art. no. 001 [J].
Gleisberg, T ;
Krauss, F ;
Matchev, KT ;
Schälicke, A ;
Schumann, S ;
Soff, G .
JOURNAL OF HIGH ENERGY PHYSICS, 2003, (09)
[30]   Pion form factor in the kT factorization formalism -: art. no. 053007 [J].
Huang, T ;
Wu, XG ;
Wu, XH .
PHYSICAL REVIEW D, 2004, 70 (05) :053007-1