REAL-VALUED NON-ANALYTIC SOLUTIONS FOR THE GENERALIZED KORTEWEG-DE VRIES EQUATION

被引:4
作者
Himonas, A. Alexandrou [1 ]
Petronilho, Gerson [2 ]
机构
[1] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
[2] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Generalized Korteweg-de Vries equation; gKdV; Cauchy problem; periodic; non-periodic; analytic solutions; NONLINEAR SCHRODINGER-EQUATIONS; GLOBAL WELL-POSEDNESS; DEVRIES EQUATION; KDV EQUATION; ILL-POSEDNESS; ANALYTICITY; UNIQUENESS;
D O I
10.1090/S0002-9939-2011-10983-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In both the periodic and non-periodic cases, non-analytic in time solutions to the Cauchy problem of the gKdV equation are constructed with real-valued analytic initial data when k is not a multiple of four. In the case that k = 4l, that is, the non-linearity is of the form u(4l)partial derivative(x)u, where l is a positive integer, then non-analytic in time solutions are available only for complex-valued initial data.
引用
收藏
页码:2759 / 2766
页数:8
相关论文
共 30 条
[1]  
[Anonymous], 2006, CBMS REGIONAL SERIES
[2]   On the ill-posedness of the IVP for the generalized Korteweg-DeVries and nonlinear Schrodinger equations [J].
Birnir, B ;
Kenig, CE ;
Ponce, G ;
Svanstedt, N ;
Vega, L .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1996, 53 :551-559
[3]   Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation [J].
Bona, JL ;
Grujic, Z ;
Kalisch, H .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (06) :783-797
[4]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[5]  
Bourgain J., 1997, Selecta Math. (N.S.), V3, P115
[6]  
BOURGAIN J, 1993, J FOURIER ANAL APPL, P17
[7]  
Bourgain J., 1993, The KdV equations, GAGA, V3, P209, DOI 10.1007/BF01895688
[8]  
Christ M, 2003, AM J MATH, V125, P1235
[9]   Sharp global well-posedness for KDV and modified KDV on R and T [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) :705-749
[10]   Multilinear estimates for periodic KdV equations, and applications [J].
Colliander, J ;
Keel, M ;
Staffilani, G ;
Takaoka, H ;
Tao, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 211 (01) :173-218