MHz-repetition-rate, sub-mW, multi-octave THz wave generation in HMQ-TMS

被引:18
作者
Buchmann, Tobias Olaf [1 ]
Kelleher, Edmund J. R. [1 ]
Kaltenecker, Korbinian J. [1 ]
Zhou, Binbin [1 ]
Lee, Seung-Heon [2 ]
Kwon, O-Pil [2 ]
Jazbinsek, Mojca [3 ]
Rotermund, Fabian [4 ]
Jepsen, Peter Uhd [1 ]
机构
[1] Tech Univ Denmark, DTU Foton, Orsteds Plads 343, DK-2800 Lyngby, Denmark
[2] Ajou Univ, Dept Mol Sci & Technol, Suwon 443749, South Korea
[3] Zurich Univ Appl Sci, Inst Computat Phys, Technikumstr 9, CH-8400 Winterthur, Switzerland
[4] Korea Adv Inst Sci & Technol, Dept Phys, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
TIME-DOMAIN SPECTROSCOPY; OPTICAL RECTIFICATION; TERAHERTZ PULSES; LASER; ABSORPTION; INDEX;
D O I
10.1364/OE.386604
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We demonstrate the first megahertz (MHz) repetition-rate, broadband terahertz (THz) source based on optical rectification in the organic crystal HMQ-TMS driven by a femtosecond Yb:fibre laser. Pumping at 1035 nm with 30 fs pulses, we achieve few-cycle THz emission with a smooth multi-octave spectrum that extends up to 6 THz at -30 dB, with conversion efficiencies reaching 10 4 and an average output power of up to 0.38 mW. We assess the thermal damage limit of the crystal and conclude a maximum fluence of similar to 1.8 mJ.cm(-2) at 10 MHz with a 1/e(2) pump beam diameter of 0.10 mm. We compare the performance of HMQ-TMS with the prototypical inorganic crystal gallium phosphide (GaP), yielding a tenfold electric field increase with a peak on-axis field strength of 7 kV.cm(-1) and almost double the THz bandwidth. Our results further demonstrate the suitability of organic crystals in combination with fibre lasers for repetition-rate scaling of broadband, high-power THz sources for time-domain spectroscopic applications. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:9631 / 9641
页数:11
相关论文
共 29 条
[1]  
Agrawal GP, 2008, APPLICATIONS OF NONLINEAR FIBER OPTICS, 2ND EDITION, P1
[2]   THz generation by optical rectification of near-infrared laser pulses in the organic nonlinear optical crystal HMQ-TMS [J].
Brunner, Fabian D. J. ;
Lee, Seung-Heon ;
Kwon, O-Pil ;
Feurer, Thomas .
OPTICAL MATERIALS EXPRESS, 2014, 4 (08) :1586-1592
[3]   Numerical studies on the electro-optic detection of femtosecond electron bunches [J].
Casalbuoni, S. ;
Schlarb, H. ;
Schmidt, B. ;
Schmueser, P. ;
Steffen, B. ;
Winter, A. .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2008, 11 (07)
[4]   Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon [J].
Dai, JM ;
Zhang, JQ ;
Zhang, WL ;
Grischkowsky, D .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2004, 21 (07) :1379-1386
[5]  
Dexheimer S.L., 2017, TERAHERTZ SPECTROSCO
[6]  
Drs J., 2019, STH3F5 CLEO, V5
[7]   Molecular absorption cross-section and absolute absorptivity in the THz frequency range for the explosives TNT, RDX, HMX, and PETN [J].
Fitch, Michael J. ;
Leahy-Hoppa, Megan R. ;
Ott, Edward W. ;
Osiander, Robert .
CHEMICAL PHYSICS LETTERS, 2007, 443 (4-6) :284-288
[8]   Laser-Driven Strong-Field Terahertz Sources [J].
Fulop, Jozsef Andras ;
Tzortzakis, Stelios ;
Kampfrath, Tobias .
ADVANCED OPTICAL MATERIALS, 2020, 8 (03)
[9]   A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy [J].
Han, PY ;
Tani, M ;
Usami, M ;
Kono, S ;
Kersting, R ;
Zhang, XC .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (04) :2357-2359
[10]   Fiber laser pumped high average power single-cycle terahertz pulse source [J].
Hoffmann, Matthias C. ;
Yeh, Ka-Lo ;
Hwang, Harold Y. ;
Sosnowski, Thomas S. ;
Prall, Bradley S. ;
Hebling, Janos ;
Nelson, Keith A. .
APPLIED PHYSICS LETTERS, 2008, 93 (14)