Path-dependent scaling of geometric phase near a quantum multi-critical point

被引:8
作者
Patra, Ayoti [1 ]
Mukherjee, Victor [1 ]
Dutta, Amit [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Phys, Kanpur 208016, Uttar Pradesh, India
关键词
spin chains; ladders and planes (theory); finite-size scaling; quantum phase transitions (theory); SPIN SYSTEMS; TRANSITION; ATOMS; MODEL; GAS;
D O I
10.1088/1742-5468/2011/03/P03026
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the geometric phase of the ground state in a one-dimensional transverse XY spin chain in the vicinity of a quantum multi-critical point. We approach the multi-critical point along different paths and estimate the geometric phase by applying a rotation in all spins about the z axis by an angle eta. Although the geometric phase itself vanishes at the multi-critical point, the derivative with respect to the anisotropy parameter of the model shows peaks at different points on the ferromagnetic side close to it where the energy gap is a local minimum; we call these points 'quasi-critical'. The value of the derivative at any quasi-critical point scales with the system size in a power-law fashion with the exponent varying continuously with the parameter a that defines a path, up to a critical value alpha = alpha(c) = 2. For alpha > alpha(c), or on the paramagnetic side, no such peak is observed. Numerically obtained results are in perfect agreement with analytical predictions.
引用
收藏
页数:10
相关论文
共 39 条
[21]   Oscillating fidelity susceptibility near a quantum multicritical point [J].
Mukherjee, Victor ;
Polkovnikov, Anatoli ;
Dutta, Amit .
PHYSICAL REVIEW B, 2011, 83 (07)
[22]   Adiabatic multicritical quantum quenches: Continuously varying exponents depending on the direction of quenching [J].
Mukherjee, Victor ;
Dutta, Amit .
EPL, 2010, 92 (03)
[23]   Scaling of entanglement close to a quantum phase transition [J].
Osterloh, A ;
Amico, L ;
Falci, G ;
Fazio, R .
NATURE, 2002, 416 (6881) :608-610
[24]   Geometric phases and criticality in spin systems [J].
Pachos, Jiannis K. ;
Carollo, Angelo C. M. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 364 (1849) :3463-3476
[25]  
Pancharatnam S., 1956, Proc. Indian Acad. Sci., V44, P398, DOI DOI 10.1007/BF03046050
[26]   Observation of the Ground-State Geometric Phase in a Heisenberg XY Model [J].
Peng, Xinhua ;
Wu, Sanfeng ;
Li, Jun ;
Suter, Dieter ;
Du, Jiangfeng .
PHYSICAL REVIEW LETTERS, 2010, 105 (24)
[27]  
POLKOVNIKOV A, 2010, ARXIV10075331
[28]   Finite-temperature scaling of magnetic susceptibility and the geometric phase in the XY spin chain [J].
Quan, H. T. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (39)
[29]  
Sachdev S., 1999, QUANTUM PHASE TRANSI, DOI DOI 10.1017/CBO9780511973765
[30]   Quantum Monte Carlo Simulations of Fidelity at Magnetic Quantum Phase Transitions [J].
Schwandt, David ;
Alet, Fabien ;
Capponi, Sylvain .
PHYSICAL REVIEW LETTERS, 2009, 103 (17)