Path-dependent scaling of geometric phase near a quantum multi-critical point

被引:8
作者
Patra, Ayoti [1 ]
Mukherjee, Victor [1 ]
Dutta, Amit [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Phys, Kanpur 208016, Uttar Pradesh, India
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2011年
关键词
spin chains; ladders and planes (theory); finite-size scaling; quantum phase transitions (theory); SPIN SYSTEMS; TRANSITION; ATOMS; MODEL; GAS;
D O I
10.1088/1742-5468/2011/03/P03026
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the geometric phase of the ground state in a one-dimensional transverse XY spin chain in the vicinity of a quantum multi-critical point. We approach the multi-critical point along different paths and estimate the geometric phase by applying a rotation in all spins about the z axis by an angle eta. Although the geometric phase itself vanishes at the multi-critical point, the derivative with respect to the anisotropy parameter of the model shows peaks at different points on the ferromagnetic side close to it where the energy gap is a local minimum; we call these points 'quasi-critical'. The value of the derivative at any quasi-critical point scales with the system size in a power-law fashion with the exponent varying continuously with the parameter a that defines a path, up to a critical value alpha = alpha(c) = 2. For alpha > alpha(c), or on the paramagnetic side, no such peak is observed. Numerically obtained results are in perfect agreement with analytical predictions.
引用
收藏
页数:10
相关论文
共 39 条
  • [21] Oscillating fidelity susceptibility near a quantum multicritical point
    Mukherjee, Victor
    Polkovnikov, Anatoli
    Dutta, Amit
    [J]. PHYSICAL REVIEW B, 2011, 83 (07)
  • [22] Adiabatic multicritical quantum quenches: Continuously varying exponents depending on the direction of quenching
    Mukherjee, Victor
    Dutta, Amit
    [J]. EPL, 2010, 92 (03)
  • [23] Scaling of entanglement close to a quantum phase transition
    Osterloh, A
    Amico, L
    Falci, G
    Fazio, R
    [J]. NATURE, 2002, 416 (6881) : 608 - 610
  • [24] Geometric phases and criticality in spin systems
    Pachos, Jiannis K.
    Carollo, Angelo C. M.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 364 (1849): : 3463 - 3476
  • [25] Pancharatnam S., 1956, Proc. Indian Acad. Sci., V44, P398, DOI DOI 10.1007/BF03046050
  • [26] Observation of the Ground-State Geometric Phase in a Heisenberg XY Model
    Peng, Xinhua
    Wu, Sanfeng
    Li, Jun
    Suter, Dieter
    Du, Jiangfeng
    [J]. PHYSICAL REVIEW LETTERS, 2010, 105 (24)
  • [27] POLKOVNIKOV A, 2010, ARXIV10075331
  • [28] Finite-temperature scaling of magnetic susceptibility and the geometric phase in the XY spin chain
    Quan, H. T.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (39)
  • [29] Sachdev S., 1999, QUANTUM PHASE TRANSI, DOI DOI 10.1017/CBO9780511973765
  • [30] Quantum Monte Carlo Simulations of Fidelity at Magnetic Quantum Phase Transitions
    Schwandt, David
    Alet, Fabien
    Capponi, Sylvain
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (17)