Path-dependent scaling of geometric phase near a quantum multi-critical point

被引:8
作者
Patra, Ayoti [1 ]
Mukherjee, Victor [1 ]
Dutta, Amit [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Phys, Kanpur 208016, Uttar Pradesh, India
关键词
spin chains; ladders and planes (theory); finite-size scaling; quantum phase transitions (theory); SPIN SYSTEMS; TRANSITION; ATOMS; MODEL; GAS;
D O I
10.1088/1742-5468/2011/03/P03026
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the geometric phase of the ground state in a one-dimensional transverse XY spin chain in the vicinity of a quantum multi-critical point. We approach the multi-critical point along different paths and estimate the geometric phase by applying a rotation in all spins about the z axis by an angle eta. Although the geometric phase itself vanishes at the multi-critical point, the derivative with respect to the anisotropy parameter of the model shows peaks at different points on the ferromagnetic side close to it where the energy gap is a local minimum; we call these points 'quasi-critical'. The value of the derivative at any quasi-critical point scales with the system size in a power-law fashion with the exponent varying continuously with the parameter a that defines a path, up to a critical value alpha = alpha(c) = 2. For alpha > alpha(c), or on the paramagnetic side, no such peak is observed. Numerically obtained results are in perfect agreement with analytical predictions.
引用
收藏
页数:10
相关论文
共 39 条
[11]   Anomalous nonergodic scaling in adiabatic multicritical quantum quenches [J].
Deng, Shusa ;
Ortiz, Gerardo ;
Viola, Lorenza .
PHYSICAL REVIEW B, 2009, 80 (24)
[12]  
Dutta A., 2010, ARXIV10120653
[13]   Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms [J].
Greiner, M ;
Mandel, O ;
Esslinger, T ;
Hänsch, TW ;
Bloch, I .
NATURE, 2002, 415 (6867) :39-44
[14]  
GU SJ, 2008, ARXIV08113127
[15]   Cold bosonic atoms in optical lattices [J].
Jaksch, D ;
Bruder, C ;
Cirac, JI ;
Gardiner, CW ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (15) :3108-3111
[16]   About the Pauli's equivalence prohibited. [J].
Jordan, P. ;
Wigner, E. .
ZEITSCHRIFT FUR PHYSIK, 1928, 47 (9-10) :631-651
[17]  
JUN TL, 2010, ARXIV10114331
[18]   Topological entanglement entropy [J].
Kitaev, A ;
Preskill, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[19]   INTRODUCTION TO LATTICE GAUGE-THEORY AND SPIN SYSTEMS [J].
KOGUT, JB .
REVIEWS OF MODERN PHYSICS, 1979, 51 (04) :659-713
[20]  
Lieb E, 1961, ANN PHYS-NEW YORK, V16, P37004