Gauge equivalence between (2+l)-dimensional continuous Heisenberg ferromagnetic models and nonlinear Schrodinger-type equations

被引:50
作者
Myrzakulov, R [1 ]
Nugmanova, GN
Syzdykova, RN
机构
[1] Inst Phys & Technol, Alma Ata 480082 82, Kazakhstan
[2] Ctr Nonlinear Problems, Alma Ata 480035 35, Kazakhstan
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1998年 / 31卷 / 47期
关键词
D O I
10.1088/0305-4470/31/47/013
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The gauge equivalence between the (2 + 1)-dimensional Zakharov equation and the (2 + 1)-dimensional integrable continuous Heisenberg ferromagnetic model is established. Their integrable reductions are also shown explicitly.
引用
收藏
页码:9535 / 9545
页数:11
相关论文
共 18 条
[1]  
Ablowitz M., 1992, SOLITONS NONLINEAR E, Vsecond
[2]  
BOGOYAVLENSKY OI, 1991, BREAKING SOLITONS
[3]   MULTI-VORTEX SOLUTIONS OF A TWO-DIMENSIONAL NONLINEAR-WAVE EQUATION [J].
ISHIMORI, Y .
PROGRESS OF THEORETICAL PHYSICS, 1984, 72 (01) :33-37
[4]  
Konopelchenko B.G., 1993, Solitons in Multidimensions, DOI DOI 10.1142/1982
[5]   ON THE GAUGE EQUIVALENCE OF THE EQUATION OF DYNAMICS FOR UNIAXIAL FERROMAGNETS [J].
KOTLYAROV, VP .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (05) :L139-L143
[6]   COMMENTS ON THE GAUGE EQUIVALENCE BETWEEN HEISENBERG SPIN CHAINS WITH SINGLE-SITE ANISOTROPY AND NON-LINEAR SCHRODINGER-EQUATIONS [J].
KUNDU, A ;
PASHAEV, O .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (17) :L585-L590
[7]   CONTINUUM SPIN SYSTEM AS AN EXACTLY SOLVABLE DYNAMICAL SYSTEM [J].
LAKSHMANAN, M .
PHYSICS LETTERS A, 1977, 61 (01) :53-54
[8]   Motion of curves and surfaces and nonlinear evolution equations in (2+1) dimensions [J].
Lakshmanan, M ;
Myrzakulov, R ;
Vijayalakshmi, S ;
Danlybaeva, AK .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (07) :3765-3771
[9]   On the simplest (2+1) dimensional integrable spin systems and their equivalent nonlinear Schrodinger equations [J].
Myrzakulov, R ;
Vijayalakshmi, S ;
Syzdykova, RN ;
Lakshmanan, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (04) :2122-2140
[10]   A (2+1)-dimensional integrable spin model: Geometrical and gauge equivalent counterpart, solitons and localized coherent structures [J].
Myrzakulov, R ;
Vijayalakshmi, S ;
Nugmanova, GN ;
Lakshmanan, M .
PHYSICS LETTERS A, 1997, 233 (4-6) :391-396