Compound optimal design criteria for nonlinear models

被引:23
|
作者
McGree, J. M. [1 ]
Eccleston, J. A. [1 ]
Duffull, S. B. [2 ]
机构
[1] Univ Queensland, Sch Phys Sci, St Lucia Brisbane, Qld 4072, Australia
[2] Univ Otago, Sch Pharm, Dunedin, New Zealand
关键词
compound criteria; D-optimality; nonlinear models; opposing criteria; P-optimality; T-optimality;
D O I
10.1080/10543400802071352
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Three approaches for combining parameter estimation with opposing design criteria are proposed for nonlinear models. The first method discussed is the technique found in the literature and as such is the reference method for this paper. The compound crtierion is formed by maximizing a weighted product of efficiencies. The second criterion involves maximizing an opposing criterion while minimizing a defined loss function. The third method simultaneously maximizes both efficiencies with respect to parameter estimation and an opposing criterion with a multiple objective simulated annealing algorithm. The examples presented are based on a PK-model and a generalized linear model found in the literature.
引用
收藏
页码:646 / 661
页数:16
相关论文
共 50 条
  • [1] A GEOMETRIC APPROACH TO OPTIMAL-DESIGN FOR ONE-PARAMETER NONLINEAR MODELS
    HAINES, LM
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1995, 57 (03): : 575 - 598
  • [2] Optimal Design of Experiments for Hybrid Nonlinear Models, with Applications to Extended Michaelis–Menten Kinetics
    Yuanzhi Huang
    Steven G. Gilmour
    Kalliopi Mylona
    Peter Goos
    Journal of Agricultural, Biological and Environmental Statistics, 2020, 25 : 601 - 616
  • [3] Optimal Design of Experiments for Hybrid Nonlinear Models, with Applications to Extended Michaelis-Menten Kinetics
    Huang, Yuanzhi
    Gilmour, Steven G.
    Mylona, Kalliopi
    Goos, Peter
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2020, 25 (04) : 601 - 616
  • [4] Optimal relevant subset designs in nonlinear models
    Lane, Adam
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2025,
  • [5] OPTIMAL DESIGNS FOR GENERALIZED LINEAR MODELS WITH MULTIPLE DESIGN VARIABLES
    Yang, Min
    Zhang, Bin
    Huang, Shuguang
    STATISTICA SINICA, 2011, 21 (03) : 1415 - 1430
  • [6] Optimal Design of Experiments for Implicit Models
    Duarte, Belmiro P. M.
    Atkinson, Anthony C.
    Granjo, Jose F. O.
    Oliveira, Nuno M. C.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (539) : 1424 - 1437
  • [7] A NOTE ON OPTIMAL BAYESIAN DESIGN FOR NONLINEAR PROBLEMS
    CHALONER, K
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 37 (02) : 229 - 235
  • [8] Selecting nonlinear time series models using information criteria
    Psaradakis, Zacharias
    Sola, Martin
    Spagnolo, Fabio
    Spagnolo, Nicola
    JOURNAL OF TIME SERIES ANALYSIS, 2009, 30 (04) : 369 - 394
  • [9] OPTIMAL DESIGNS FOR NONLINEAR MODELS WITH RANDOM BLOCK EFFECTS
    Wang, Xin
    Yang, Min
    Zheng, Wei
    STATISTICA SINICA, 2019, 29 (01) : 283 - 302
  • [10] A gentle introduction to optimal design for regression models
    O'Bren, TE
    Funk, GM
    AMERICAN STATISTICIAN, 2003, 57 (04): : 265 - 267