An Operational Matrix Method for Solving Delay Fredholm and Volterra Integro-Differential Equations

被引:12
|
作者
Shahmorad, Sedaghat [1 ]
Ostadzad, Mohammad Hossein [1 ]
机构
[1] Univ Tabriz, Dept Appl Math, Fac Math Sci, Tabriz, Iran
关键词
Operational Tau method; delay Fredholm integro-differential equation; delay Volterra integro-differential equation; DIFFERENTIAL EIGENVALUE PROBLEMS; NUMERICAL-SOLUTION; TAU-METHOD; APPROXIMATION; ELEMENTS; LINES;
D O I
10.1142/S0219876216500407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we develop the operational approach to the Tau method to solve delay integro-differential equations (DIDEs). The differential and integral parts appearing in the equations are replaced by their operational Tau matrix representations. Some numerical results are given to demonstrate the superior performance of the method.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] A method for fractional Volterra integro-differential equations by Laguerre polynomials
    Bayram, Dilek Varol
    Dascioglu, Aysegul
    ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [42] B-Spline collocation method for linear and nonlinear Fredholm and Volterra integro-differential equations
    Mahmoodi, Z.
    Rashidinia, J.
    Babolian, E.
    APPLICABLE ANALYSIS, 2013, 92 (09) : 1787 - 1802
  • [43] Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method
    Abu Arqub, Omar
    Al-Smadi, Mohammed
    Shawagfeh, Nabil
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (17) : 8938 - 8948
  • [44] Perturbed Galerkin Method for Solving Integro-Differential Equations
    Issa, K.
    Biazar, J.
    Agboola, T. O.
    Aliu, T.
    JOURNAL OF APPLIED MATHEMATICS, 2022, 2022
  • [45] Solving Fredholm integro-differential equations involving integral condition: A new numerical method
    Kadirbayeva, Zhazira
    Bakirova, Elmira
    Tleulessova, Agila
    MATHEMATICA SLOVACA, 2024, 74 (02) : 403 - 416
  • [46] The backward substitution method for multipoint problems with linear Volterra-Fredholm integro-differential equations of the neutral type
    Reutskiy, S. Yu.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 296 : 724 - 738
  • [47] Error analysis of a spectrally accurate Volterra-transformation method for solving 1-D Fredholm integro-differential equations
    Fairbairn, Abigail I.
    Kelmanson, Mark A.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2018, 144 : 382 - 391
  • [48] Rational approximation for solving Fredholm integro-differential equations by new algorithm
    Nawaz, Rashid
    Sumera
    Zada, Laiq
    Ayaz, Muhammad
    Ahmad, Hijaz
    Awwad, Fuad A.
    Ismail, Emad A. A.
    OPEN PHYSICS, 2023, 21 (01):
  • [49] Laguerre approach for solving pantograph-type Volterra integro-differential equations
    Yuzbasi, Suayip
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 1183 - 1199
  • [50] Systems of nonlinear Volterra integro-differential equations
    Jalil Rashidinia
    Ali Tahmasebi
    Numerical Algorithms, 2012, 59 : 197 - 212