An Operational Matrix Method for Solving Delay Fredholm and Volterra Integro-Differential Equations

被引:12
作者
Shahmorad, Sedaghat [1 ]
Ostadzad, Mohammad Hossein [1 ]
机构
[1] Univ Tabriz, Dept Appl Math, Fac Math Sci, Tabriz, Iran
关键词
Operational Tau method; delay Fredholm integro-differential equation; delay Volterra integro-differential equation; DIFFERENTIAL EIGENVALUE PROBLEMS; NUMERICAL-SOLUTION; TAU-METHOD; APPROXIMATION; ELEMENTS; LINES;
D O I
10.1142/S0219876216500407
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we develop the operational approach to the Tau method to solve delay integro-differential equations (DIDEs). The differential and integral parts appearing in the equations are replaced by their operational Tau matrix representations. Some numerical results are given to demonstrate the superior performance of the method.
引用
收藏
页数:20
相关论文
共 36 条
[11]   A TAU-METHOD BASED ON NONUNIFORM SPACE-TIME ELEMENTS FOR THE NUMERICAL-SIMULATION OF SOLITONS [J].
HOSSEINI, M ;
ABADI, A ;
ORTIZ, EL .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 22 (09) :7-19
[12]   THE ALGEBRAIC KERNEL-METHOD FOR THE NUMERICAL-SOLUTION OF PARTIAL-DIFFERENTIAL EQUATIONS [J].
HOSSEINI, M ;
ABADI, A ;
ORTIZ, EL .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1991, 12 (3-4) :339-360
[13]  
Hosseini M., 2000, INT J APPL MATH, V2, P1027
[14]   Numerical piecewise approximate solution of Fredholm integro-differential equations by the Tau method [J].
Hosseini, SM ;
Shahmorad, S .
APPLIED MATHEMATICAL MODELLING, 2005, 29 (11) :1005-1021
[15]   Numerical solution of a class of Integro-Differential equations by the Tau Method with an error estimation [J].
Hosseini, SM ;
Shahmorad, S .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 136 (2-3) :559-570
[16]   Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases [J].
Hosseini, SM ;
Shahmorad, S .
APPLIED MATHEMATICAL MODELLING, 2003, 27 (02) :145-154
[17]  
Kharitonov V. L, 2013, Time-Delay Systems
[18]  
Lakshmanan M, 2010, SPRINGER SER SYNERG, P1, DOI 10.1007/978-3-642-14938-2
[19]   NUMERICAL-SOLUTION OF ORDINARY AND PARTIAL FUNCTIONAL-DIFFERENTIAL EIGENVALUE PROBLEMS WITH THE TAU METHOD [J].
LIU, KM ;
ORTIZ, EL .
COMPUTING, 1989, 41 (03) :205-217
[20]   TAU-METHOD APPROXIMATION OF DIFFERENTIAL EIGENVALUE PROBLEMS WHERE THE SPECTRAL PARAMETER ENTERS NONLINEARLY [J].
LIU, KM ;
ORTIZ, EL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 72 (02) :299-310