Isometric group actions on banach spaces and representations vanishing at infinity

被引:22
作者
De Cornulier, Yves [1 ]
Tessera, Romain [2 ]
Valette, Alain [3 ]
机构
[1] IRMAR, F-35042 Rennes, France
[2] Vanderbilt Univ, Stevenson Ctr, Dept Math, Nashville, TN 37240 USA
[3] Univ Neuchatel, Inst Math, CH-2009 Neuchatel, Switzerland
关键词
affine isometries; isometric representations; 1-cohomology; vanishing of coefficients;
D O I
10.1007/s00031-008-9006-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our main result is that the simple Lie group G = Sp( n; 1) acts metrically properly isometrically on L-p( G) if p > 4 n + 2. To prove this, we introduce Property (BP0V), with V being a Banach space: a locally compact group G has Property (BP0V) if every affine isometric action of G on V, such that the linear part is a C-0- representation of G, either has a fixed point or is metrically proper. We prove that solvable groups, connected Lie groups, and linear algebraic groups over a local field of characteristic zero, have Property ( BP V 0). As a consequence, for unitary representations, we characterize those groups in the latter classes for which the first cohomology with respect to the left regular representation on L-2(G) is nonzero; and we characterize uniform lattices in those groups for which the first L-2- Betti number is nonzero.
引用
收藏
页码:125 / 147
页数:23
相关论文
共 35 条
  • [11] BOREL A, 1967, REDUKTIVNYE GRUPPY, P43
  • [12] L2-COHOMOLOGY AND GROUP COHOMOLOGY
    CHEEGER, J
    GROMOV, M
    [J]. TOPOLOGY, 1986, 25 (02) : 189 - 215
  • [13] CHERIX PA, 2001, GROUPS HAAGERUP PROP, V197
  • [14] de Cornulier Y, 2006, J LIE THEORY, V16, P67
  • [15] DELAROCHE Y, 1968, SEM BOURB 20 ANN
  • [16] Eckmann B, 2004, ENSEIGN MATH, V50, P123
  • [17] EDELSTEIN M, 1964, P CAMB PHILOS SOC, V60, P439
  • [18] Almost isometric actions, property (T), and local rigidity
    Fisher, D
    Margulis, G
    [J]. INVENTIONES MATHEMATICAE, 2005, 162 (01) : 19 - 80
  • [19] GUICHARDET A, 1972, B SCI MATH, V96, P305
  • [20] Guichardet A., 1980, COHOMOLOGIE GROUPES