GrandPrix: scaling up the Bayesian GPLVM for single-cell data

被引:34
作者
Ahmed, Sumon [1 ]
Rattray, Magnus [1 ]
Boukouvalas, Alexis [1 ]
机构
[1] Univ Manchester, Fac Biol Med & Hlth, Div Informat Imaging & Data Sci, Manchester M13 9PL, Lancs, England
基金
英国惠康基金;
关键词
RNA-SEQ; FATE DECISIONS; RESOLUTION; ZYGOTE;
D O I
10.1093/bioinformatics/bty533
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The Gaussian Process Latent Variable Model (GPLVM) is a popular approach for dimensionality reduction of single-cell data and has been used for pseudotime estimation with capture time information. However, current implementations are computationally intensive and will not scale up to modern droplet-based single-cell datasets which routinely profile many tens of thousands of cells. Results: We provide an efficient implementation which allows scaling up this approach to modern single-cell datasets. We also generalize the application of pseudotime inference to cases where there are other sources of variation such as branching dynamics. We apply our method on microarray, nCounter, RNA-seq, qPCR and droplet-based datasets from different organisms. The model converges an order of magnitude faster compared to existing methods whilst achieving similar levels of estimation accuracy. Further, we demonstrate the flexibility of our approach by extending the model to higher-dimensional latent spaces that can be used to simultaneously infer pseudotime and other structure such as branching. Thus, the model has the capability of producing meaningful biological insights about cell ordering as well as cell fate regulation.
引用
收藏
页码:47 / 54
页数:8
相关论文
共 34 条
  • [1] [Anonymous], 2016, P INT C NEUR INF PRO
  • [2] Accelerating scientific computations with mixed precision algorithms
    Baboulin, Marc
    Buttari, Alfredo
    Dongarra, Jack
    Kurzak, Jakub
    Langou, Julie
    Langou, Julien
    Luszczek, Piotr
    Tomov, Stanimire
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (12) : 2526 - 2533
  • [3] High-dimensional analysis of the murine myeloid cell system
    Becher, Burkhard
    Schlitzer, Andreas
    Chen, Jinmiao
    Mair, Florian
    Sumatoh, Hermi R.
    Teng, Karen Wei Weng
    Low, Donovan
    Ruedl, Christiane
    Riccardi-Castagnoli, Paola
    Poidinger, Michael
    Greter, Melanie
    Ginhoux, Florent
    Newell, Evan W.
    [J]. NATURE IMMUNOLOGY, 2014, 15 (12) : 1181 - 1189
  • [4] Single-Cell Trajectory Detection Uncovers Progression and Regulatory Coordination in Human B Cell Development
    Bendall, Sean C.
    Davis, Kara L.
    Amir, El-ad David
    Tadmor, Michelle D.
    Simonds, Erin F.
    Chen, Tiffany J.
    Shenfeld, Daniel K.
    Nolan, Garry P.
    Pe'er, Dana
    [J]. CELL, 2014, 157 (03) : 714 - 725
  • [5] Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    Buettner, Florian
    Natarajan, Kedar N.
    Casale, F. Paolo
    Proserpio, Valentina
    Scialdone, Antonio
    Theis, Fabian J.
    Teichmann, Sarah A.
    Marioni, John C.
    Stegie, Oliver
    [J]. NATURE BIOTECHNOLOGY, 2015, 33 (02) : 155 - 160
  • [6] A novel approach for resolving differences in single-cell gene expression patterns from zygote to blastocyst
    Buettner, Florian
    Theis, Fabian J.
    [J]. BIOINFORMATICS, 2012, 28 (18) : I626 - I632
  • [7] Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference
    Campbell, Kieran R.
    Yau, Christopher
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (11)
  • [8] Damianou AC, 2016, J MACH LEARN RES, V17, P1
  • [9] Resolution of Cell Fate Decisions Revealed by Single-Cell Gene Expression Analysis from Zygote to Blastocyst
    Guo, Guoji
    Huss, Mikael
    Tong, Guo Qing
    Wang, Chaoyang
    Sun, Li Li
    Clarke, Neil D.
    Robson, Paul
    [J]. DEVELOPMENTAL CELL, 2010, 18 (04) : 675 - 685
  • [10] Diffusion pseudotime robustly reconstructs lineage branching
    Haghverdi, Laleh
    Buettner, Maren
    Wolf, F. Alexander
    Buettner, Florian
    Theis, Fabian J.
    [J]. NATURE METHODS, 2016, 13 (10) : 845 - +