Convergence of memory gradient methods

被引:1
作者
Shi, Zhen-Jun [1 ,2 ]
Guo, Jinhua [2 ]
机构
[1] Qufu Normal Univ, Coll Operat Res & Management, Rizhao 276826, Shandong, Peoples R China
[2] Univ Michigan, Dept Comp & Informat Sci, Dearborn, MI 48128 USA
基金
美国国家科学基金会;
关键词
unconstrained optimization; memory gradient method; global convergence;
D O I
10.1080/00207160701466370
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present a new class of memory gradient methods for unconstrained optimization problems and develop some useful global convergence properties under some mild conditions. In the new algorithms, trust region approach is used to guarantee the global convergence. Numerical results show that some memory gradient methods are stable and efficient in practical computation. In particular, some memory gradient methods can be reduced to the BB method in some special cases.
引用
收藏
页码:1039 / 1053
页数:15
相关论文
共 29 条
[1]   2-POINT STEP SIZE GRADIENT METHODS [J].
BARZILAI, J ;
BORWEIN, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :141-148
[2]  
CONN AR, 1999, TRUST REGION METHODS
[3]  
Dai Y., 2000, NONLINEAR CONJUGATE
[4]  
Dai YH, 2003, J COMPUT MATH, V21, P221
[5]   R-linear convergence of the Barzilai and Borwein gradient method [J].
Dai, YH ;
Liao, LZ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (01) :1-10
[6]   Analysis of monotone gradient methods [J].
Dai, Yu-Hong ;
Yuan, Ya-xiang .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2005, 1 (02) :181-192
[7]  
Fletcher R, 1987, PRACTICAL METHODS OP, V1
[8]   GLOBAL CONVERGENCE PROPERTIES OF CONJUGATE GRADIENT METHODS FOR OPTIMIZATION [J].
Gilbert, Jean Charles ;
Nocedal, Jorge .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (01) :21-42
[9]   An adaptive conic trust-region method for unconstrained optimization [J].
Han, QM ;
Sun, WY ;
Han, JY ;
Sampaio, RJB .
OPTIMIZATION METHODS & SOFTWARE, 2005, 20 (06) :665-677
[10]   Nonmonotone spectral methods for large-scale nonlinear systems [J].
La Cruz, W ;
Raydan, M .
OPTIMIZATION METHODS & SOFTWARE, 2003, 18 (05) :583-599