The Munich Compact Light Source: initial performance measures

被引:87
|
作者
Eggl, Elena [1 ]
Dierolf, Martin [1 ]
Achterhold, Klaus [1 ]
Jud, Christoph [1 ]
Guenther, Benedikt [1 ,2 ]
Braig, Eva [1 ]
Gleich, Bernhard [3 ]
Pfeiffer, Franz [1 ,4 ]
机构
[1] Tech Univ Munich, Phys Dept, James Franck Str 1, D-85748 Garching, Germany
[2] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[3] Tech Univ Munich, Inst Med Tech, Boltzmannstr 11, D-85748 Garching, Germany
[4] Tech Univ Munich, Inst Radiol, Klinikum Rechts Isar, Ismaninger Str 22, D-81675 Munich, Germany
来源
JOURNAL OF SYNCHROTRON RADIATION | 2016年 / 23卷
基金
欧洲研究理事会;
关键词
inverse Compton X-rays; compact synchrotron; X-ray imaging; TOMOGRAPHY;
D O I
10.1107/S160057751600967X
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
While large-scale synchrotron sources provide a highly brilliant monochromatic X-ray beam, these X-ray sources are expensive in terms of installation and maintenance, and require large amounts of space due to the size of storage rings for GeV electrons. On the other hand, laboratory X-ray tube sources can easily be implemented in laboratories or hospitals with comparatively little cost, but their performance features a lower brilliance and a polychromatic spectrum creates problems with beam hardening artifacts for imaging experiments. Over the last decade, compact synchrotron sources based on inverse Compton scattering have evolved as one of the most promising types of laboratory-scale X-ray sources: they provide a performance and brilliance that lie in between those of large-scale synchrotron sources and X-ray tube sources, with significantly reduced financial and spatial requirements. These sources produce X-rays through the collision of relativistic electrons with infrared laser photons. In this study, an analysis of the performance, such as X-ray flux, source size and spectra, of the first commercially sold compact light source, the Munich Compact Light Source, is presented.
引用
收藏
页码:1137 / 1142
页数:6
相关论文
共 50 条
  • [11] X-ray phase-contrast tomography with a compact laser-driven synchrotron source
    Eggl, Elena
    Schleede, Simone
    Bech, Martin
    Achterhold, Klaus
    Loewen, Roderick
    Ruth, Ronald D.
    Pfeiffer, Franz
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (18) : 5567 - 5572
  • [12] Ptychographic nanotomography at the Swiss Light Source
    Guizar-Sicairos, Manuel
    Holler, Mirko
    Diaz, Ana
    da Silva, Julio C.
    Tsai, Esther H. R.
    Bunk, Oliver
    Martinez-Perez, Carlos
    Donoghue, Philip C. J.
    Wellman, Charles H.
    Menzel, Andreas
    X-RAY NANOIMAGING: INSTRUMENTS AND METHODS II, 2015, 9592
  • [13] Design and performance of a compact and stationary microSPECT system
    Van Holen, Roel
    Vandeghinste, Bert
    Deprez, Karel
    Vandenberghe, Stefaan
    MEDICAL PHYSICS, 2013, 40 (11)
  • [14] The materials science beamline at the Swiss Light Source
    Patterson, BD
    Brönnimann, C
    Maden, D
    Gozzo, F
    Groso, A
    Schmitt, B
    Stampanoni, M
    Willmott, PR
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2005, 238 (1-4) : 224 - 228
  • [15] Performance measures of the tomographic classifier fusion methodology
    Windridge, D
    Kittler, J
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2005, 19 (06) : 731 - 753
  • [16] High-resolution μCT of a mouse embryo using a compact laser-driven X-ray betatron source
    Cole, Jason M.
    Symes, Daniel R.
    Lopes, Nelson C.
    Wood, Jonathan C.
    Poder, Kristjan
    Alatabi, Saleh
    Botchway, Stanley W.
    Foster, Peta S.
    Gratton, Sarah
    Johnson, Sara
    Kamperidis, Christos
    Kononenko, Olena
    De lazzari, Michael
    Palmer, Charlotte A. J.
    Rusby, Dean
    Sanderson, Jeremy
    Sandholzer, Michael
    Sarri, Gianluca
    Szoke-Kovacs, Zsombor
    Teboul, Lydia
    Thompson, James M.
    Warwick, Jonathan R.
    Westerberg, Henrik
    Hill, Mark A.
    Norris, Dominic P.
    Mangles, Stuart P. D.
    Najmudin, Zulfikar
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (25) : 6335 - 6340
  • [17] Swept source optical coherence microscopy using a 1310 nm VCSEL light source
    Ahsen, Osman O.
    Tao, Yuankai K.
    Potsaid, Benjamin M.
    Sheikine, Yuri
    Jiang, James
    Grulkowski, Ireneusz
    Tsai, Tsung-Han
    Jayaraman, Vijaysekhar
    Kraus, Martin F.
    Connolly, James L.
    Hornegger, Joachim
    Cable, Alex
    Fujimoto, James G.
    OPTICS EXPRESS, 2013, 21 (15): : 18021 - 18033
  • [18] Biomedical facility for the future Polish synchrotron light source
    Pelka, Jerzy B.
    RADIATION PHYSICS AND CHEMISTRY, 2009, 78 : S142 - S148
  • [19] Ptychography at the Linac Coherent Light Source in a parasitic geometry
    Pound, Benjamin A.
    Mertes, Kevin M.
    Carr, Adra, V
    Seaberg, Matthew H.
    Hunter, Mark S.
    Ward, William C.
    Hunter, James F.
    Sweeney, Christine M.
    Sewell, Christopher M.
    Weisse-Bernstein, Nina R.
    Baldwin, J. Kevin S.
    Sandberg, Richard L.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2020, 53 : 1276 - 1282
  • [20] Effect on the longitudinal coherence properties of a pseudothermal light source as a function of source size and temporal coherence
    Ahmad, Azeem
    Mahanty, Tanmoy
    Dubey, Vishesh
    Butola, Ankit
    Ahluwalia, Balpreet Singh
    Mehta, Dalip Singh
    OPTICS LETTERS, 2019, 44 (07) : 1817 - 1820