Hitting and return times in ergodic dynamical systems

被引:76
作者
Haydn, N
Lacroix, Y
Vaienti, S
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Univ Sud Toulon Var, ISITV, F-83162 La Valette, France
[3] Univ Aix Marseille 1, CNRS, UMR 6207, Ctr Phys Theor, F-13288 Marseille, France
[4] Univ Aix Marseille 2, CNRS, UMR 6207, Ctr Phys Theor, F-13288 Marseille, France
[5] Univ Sud Toulon Var, FRUMAN, CPT, F-13288 Marseille, France
关键词
asymptotic distribution; hitting; return times; Kac;
D O I
10.1214/009117905000000242
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given an ergodic dynamical system (X, T, mu), and U subset of X measurable with mu(U) > 0, let mu(U)tau(U)(x) denote the normalized hitting time of x is an element of X to U. We prove that given a sequence (U-n) with mu(U-n) -> 0, the distribution function of the normalized hitting times to U-n converges weakly to some subprobability distribution F if and only if the distribution function of the normalized return time converges weakly to some distribution function and that in the converging case, [GRAPHICS] This in particular characterizes asymptotics for hitting times, and shows that the asymptotics for return times is exponential if and only if the one for hitting times is also.
引用
收藏
页码:2043 / 2050
页数:8
相关论文
共 22 条
[11]  
Galves A, 1997, RANDOM COMPUT DYN, V5, P337
[12]   Statistical properties of equilibrium states for rational maps [J].
Haydn, N .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2000, 20 :1371-1390
[13]   The limiting distribution and error terms for return times of dynamical systems [J].
Haydn, N ;
Vaienti, S .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2004, 10 (03) :589-616
[14]   The distribution of the first return time for rational maps [J].
Haydn, N .
JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (5-6) :1027-1036
[15]   Statistics of return times: A general framework and new applications [J].
Hirata, M ;
Saussol, B ;
Vaienti, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 206 (01) :33-55
[16]   POISSON LAW FOR AXIOM-A DIFFEOMORPHISMS [J].
HIRATA, M .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1993, 13 :533-556
[18]   Asymptotics for hitting times [J].
Kupsa, M ;
Lacroix, Y .
ANNALS OF PROBABILITY, 2005, 33 (02) :610-619
[19]   Possible limit laws for entrance times of an ergodic aperiodic dynamical system [J].
Lacroix, Y .
ISRAEL JOURNAL OF MATHEMATICS, 2002, 132 (1) :253-263
[20]   Statistics of return times for weighted maps of the interval [J].
Paccaut, F .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2000, 36 (03) :339-366