Ranks of invariant subspaces of the Hardy space over the bidisk

被引:15
作者
Izuchi, Kei Ji [1 ]
Izuchi, Kou Hei [2 ]
Izuchi, Yuko
机构
[1] Niigata Univ, Dept Math, Niigata 9502181, Japan
[2] Korea Univ, Dept Math, Seoul 136701, South Korea
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2011年 / 659卷
关键词
SUBMODULES; SEQUENCES;
D O I
10.1515/CRELLE.2011.069
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H-2(D-2) be the Hardy space over the bidisk. Let {phi(n)(z)}(n >= 0) be a sequence of one variable inner functions such that phi(n)(z)/phi(n+1) (z) is a nonconstant inner function for every n >= 0. Associated with them, we have an invariant subspace M of H-2(D-2). When phi(0)(z) is a Blaschke product, it is determined rank(M circle minus wM) for the fringe operator F-z on M circle minus wM and rank M as an invariant subspace of H-2(D-2).
引用
收藏
页码:101 / 139
页数:39
相关论文
共 19 条
[1]   Beurling's theorem for the Bergman space [J].
Aleman, A ;
Richter, S ;
Sundberg, C .
ACTA MATHEMATICA, 1996, 177 (02) :275-310
[2]  
[Anonymous], 1981, BOUNDED ANAL FUNCTIO
[3]   INVARIANT SUBSPACES, DILATION THEORY, AND THE STRUCTURE OF THE PREDUAL OF A DUAL ALGEBRA .1. [J].
APOSTOL, C ;
BERCOVICI, H ;
FOIAS, C ;
PEARCY, C .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 63 (03) :369-404
[4]   ON 2 PROBLEMS CONCERNING LINEAR TRANSFORMATIONS IN HILBERT SPACE [J].
BEURLING, A .
ACTA MATHEMATICA, 1949, 81 (02) :239-255
[5]   AN INTERPOLATION PROBLEM FOR BOUNDED ANALYTIC FUNCTIONS [J].
CARLESON, L .
AMERICAN JOURNAL OF MATHEMATICS, 1958, 80 (04) :921-930
[6]  
Chen X., 2003, Analytic Hilbert modules
[7]  
Hedenmalm H, 1996, J REINE ANGEW MATH, V477, P13
[8]  
Hedenmalm H., 2000, GRAD TEXT M, V199, DOI 10.1007/978-1-4612-0497-8
[9]  
HEDENMALM PJH, 1993, J REINE ANGEW MATH, V443, P1
[10]  
Hoffman K., 1962, Banach Spaces of Analytic Functions