Minimal resolutions of algebras

被引:60
|
作者
Butler, MCR [1 ]
King, AD
机构
[1] Univ Liverpool, Dept Math Sci, Liverpool L69 3BX, Merseyside, England
[2] Abdus Salam ICTP, Math Sect, I-34100 Trieste, Italy
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1006/jabr.1998.7599
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A method is described for constructing the minimal projective resolution of an algebra considered as a bimodule over itself. The method applies to an algebra presented as the quotient of a tensor algebra over a separable algebra by an ideal of relations that is either homogeneous or admissible (with some additional finiteness restrictions in the latter case). In particular, it applies to any finite-dimensional algebra over an algebraically closed field. The method is illustrated by a number of examples, viz. truncated algebras, monomial algebras, and Koszul algebras, with the aim of unifying existing treatments of these in the literature. (C) 1999 Academic Press.
引用
收藏
页码:323 / 362
页数:40
相关论文
共 50 条
  • [1] Minimal injective resolutions of algebras with multiplicative bases
    Sato, H
    JOURNAL OF ALGEBRA, 1996, 186 (01) : 132 - 161
  • [2] On computation of minimal free resolutions over solvable polynomial algebras
    Li, Huishi
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2015, 56 (04): : 447 - 503
  • [4] Minimal and cellular free resolutions over polynomial OI-algebras
    Fieldsteel, Nathan
    Nagel, Uwe
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2025, 229 (01)
  • [5] Minimal injective resolutions and Auslander-Gorenstein property for path algebras
    Asadollahi, J.
    Hafezi, R.
    Keshavarz, M. H.
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (06) : 2557 - 2568
  • [6] Explicit linear minimal free resolutions over a natural class of Rees algebras
    J. Herzog
    L. O’Carroll
    D. Popescu
    Archiv der Mathematik, 2003, 81 : 636 - 645
  • [7] Explicit linear minimal free resolutions over a natural class of Rees algebras
    Herzog, J
    O'Carroll, L
    Popescu, D
    ARCHIV DER MATHEMATIK, 2003, 81 (06) : 636 - 645
  • [8] MINIMAL FREE RESOLUTIONS OF NUMERICAL SEMIGROUP ALGEBRAS VIA APÉRY SPECIALIZATION
    Braun, Benjamin
    Gomes, Tara
    Miller, Ezra
    O'neill, Christopher
    Sobieska, Aleksandra
    PACIFIC JOURNAL OF MATHEMATICS, 2025, 334 (02)
  • [9] FREE MINIMAL RESOLUTIONS
    DEALWIS, T
    COMMUNICATIONS IN ALGEBRA, 1993, 21 (12) : 4575 - 4585
  • [10] Maximal minimal resolutions
    Iyengar, S
    Pardue, K
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1999, 512 : 27 - 48