Existence and asymptotic behavior of high energy normalized solutions for the Kirchhoff type equations in R3

被引:46
作者
Luo, Xiao [1 ]
Wang, Qingfang [2 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
[2] Wuhan Polytech Univ, Sch Math & Comp Sci, Wuhan 430023, Peoples R China
关键词
Kirchhoff type; Normalized solutions; Asymptotic behavior; Variational methods; SCHRODINGER-POISSON; NONTRIVIAL SOLUTIONS; POSITIVE SOLUTIONS; PRESCRIBED NORM;
D O I
10.1016/j.nonrwa.2016.06.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the multiplicity of solutions with a prescribed L-2-norm for a class of nonlinear Kirchhoff type problems in R-3 - (a + b integral(R3) vertical bar del u vertical bar(2)) Delta u - lambda u = vertical bar u vertical bar(p-2)u, where a, b > 0 are constants, lambda is an element of R, p is an element of(14/3, 6). To get such solutions we look for critical points of the energy functional I-b(u) = a/2 integral(R3) vertical bar del u vertical bar(2) + b/4 (integral(R3) vertical bar del u vertical bar(2))(2) - 1/p integral(R3) vertical bar u vertical bar(p) restricted on the following set S-r(c) ={u is an element of H-r(1) (R-3) : parallel to u parallel to(2)(L2(R3)) = c}, c > 0. For the value p is an element of(14/3, 6) considered, the functional. I-b is unbounded from below on S-r (c). By using a minimax procedure, we prove that for any c > 0, there are infinitely many critical points {u(n)(b)}(n is an element of N+) of I-b restricted on S-r (c) with the energy I-b (u(n)(b)) -> +infinity(n -> +infinity). Moreover, we regard b as a parameter and give a convergence property of u(n)(b) as b -> 0(+). (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:19 / 32
页数:14
相关论文
共 28 条
[1]  
Alves C. O., 2001, Commun. Appl. Nonlinear Anal., V8, P43
[2]  
[Anonymous], 1883, Mechanik
[3]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[4]   Normalized solutions of nonlinear Schrodinger equations [J].
Bartsch, Thomas ;
de Valeriola, Sebastien .
ARCHIV DER MATHEMATIK, 2013, 100 (01) :75-83
[5]   Existence and instability of standing waves with prescribed norm for a class of Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Jeanjean, Louis ;
Luo, Tingjian .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 :303-339
[6]   Scaling properties of functionals and existence of constrained minimizers [J].
Bellazzini, Jacopo ;
Siciliano, Gaetano .
JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (09) :2486-2507
[7]   Stable standing waves for a class of nonlinear Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Siciliano, Gaetano .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (02) :267-280
[8]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[9]  
Cavalcanti MM., 2001, Adv. Differential Equations, V6, P701
[10]   GLOBAL SOLVABILITY FOR THE DEGENERATE KIRCHHOFF EQUATION WITH REAL ANALYTIC DATA [J].
DANCONA, P ;
SPAGNOLO, S .
INVENTIONES MATHEMATICAE, 1992, 108 (02) :247-262