Kronecker's first limit formula, revisited

被引:13
|
作者
Duke, W. [1 ]
Imamoglu, O. [2 ]
Toth, A. [3 ]
机构
[1] Univ Calif Los Angeles, Math Dept, Box 951555, Los Angeles, CA 90095 USA
[2] ETH, Math Dept, CH-8092 Zurich, Switzerland
[3] Eotvos Lorand Univ, South Bldg Room 3-207, Budapest, Hungary
关键词
D O I
10.1007/s40687-018-0138-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give some new applications of Kronecker's first limit formula to real quadratic fields. In particular, we give a surprising geometrical relationship between the CM points associated with two imaginary quadratic fields with discriminants d and d' and certain winding number functions coming from the closed geodesics associated with the real quadratic field of discriminant d'd.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Turing's Formula Revisited
    Zhang, Zhiyi
    Huang, Hongwei
    JOURNAL OF QUANTITATIVE LINGUISTICS, 2007, 14 (2-3) : 222 - 241
  • [43] TOWARD A KRONECKER LIMIT FORMULA FOR SIEGEL MODULAR GROUP OF DIMENSION 2 - PRELIMINARY REPORT
    SUNLEY, JS
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A65 - A65
  • [44] Convolution Dirichlet series and a Kronecker limit formula for second-order Eisenstein series
    Jorgenson, J
    O'Sullivan, C
    NAGOYA MATHEMATICAL JOURNAL, 2005, 179 : 47 - 102
  • [45] A generalization of gamma functions and Kronecker's limit formulas
    Katayama, Koji
    JOURNAL OF NUMBER THEORY, 2010, 130 (07) : 1642 - 1674
  • [46] EVALUATING THE MAHLER MEASURE OF LINEAR FORMS VIA THE KRONECKER LIMIT FORMULA ON COMPLEX PROJECTIVE SPACE
    Cogdell, James
    Jorgenson, Jay
    Smajlovic, Lejla
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (09) : 6769 - 6796
  • [47] Brosamler’s formula revisited and extensions
    Lucian Beznea
    Mihai N. Pascu
    Nicolae R. Pascu
    Analysis and Mathematical Physics, 2019, 9 : 747 - 760
  • [48] Stochastic Kronecker Graph Revisited
    Nizam, Ahmed Mehedi
    Adnan, Md Nasim
    Islam, Md Rashedul
    Kabir, Mohammad Akbar
    2012 15TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), 2012, : 90 - 94
  • [49] Brosamler's formula revisited and extensions
    Beznea, Lucian
    Pascu, Mihai N.
    Pascu, Nicolae R.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (02) : 747 - 760
  • [50] Generalized Kronecker's theorem and strong limit power functions
    Zhang, Chuanyi
    ALEXANDRU MYLLER MATHEMATICAL SEMINAR, 2011, 1329 : 281 - 299