Dynamic response of a tunable phononic crystal under applied mechanical and magnetic loadings

被引:45
作者
Bayat, Alireza [1 ]
Gordaninejad, Faramarz [1 ]
机构
[1] Univ Nevada, Dept Mech Engn, Composite & Intelligent Mat Lab, Reno, NV 89557 USA
关键词
phononic crystal; directionality; soft magnetorheological elastomers; band-gaps; WAVE BAND-GAPS; DEFORMATION; BEHAVIOR;
D O I
10.1088/0964-1726/24/6/065027
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The dynamic response of a tunable phononic crystal consisting of a porous hyperelastic magnetoelastic elastomer subjected to a macroscopic deformation and an external magnetic field is theoretically investigated. Finite deformations and magnetic induction influence phononic characteristics of the periodic structure through geometrical pattern transformation and material properties. A magnetoelastic energy function is proposed to develop constitutive laws considering large deformations and magnetic induction in the periodic structure. Analytical and finite element methods are utilized to compute the dispersion relation and band structure of the phononic crystal for different cases of deformation and magnetic loadings. It is demonstrated that magnetic induction not only controls the band diagram of the structure but also has a strong effect on preferential directions of wave propagation.
引用
收藏
页数:11
相关论文
共 30 条
[1]   The usage of standard finite element codes for computation of dispersion relations in materials with periodic microstructure [J].
Aberg, M ;
Gudmundson, P .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 102 (04) :2007-2013
[2]   Band-Gap of a Soft Magnetorheological Phononic Crystal [J].
Bayat, Alireza ;
Gordaninejad, Faramarz .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2015, 137 (01)
[3]   Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures [J].
Bertoldi, K. ;
Boyce, M. C. ;
Deschanel, S. ;
Prange, S. M. ;
Mullin, T. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2008, 56 (08) :2642-2668
[4]   Wave propagation and instabilities in monolithic and periodically structured elastomeric materials undergoing large deformations [J].
Bertoldi, K. ;
Boyce, M. C. .
PHYSICAL REVIEW B, 2008, 78 (18)
[5]   Numerical solution of finite geometry boundary-value problems in nonlinear magnetoelasticity [J].
Bustamante, R. ;
Dorfmann, A. ;
Ogden, R. W. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (06) :874-883
[6]   Tunability of longitudinal wave band gaps in one dimensional phononic crystal with magnetostrictive material [J].
Ding, Rui ;
Su, Xingliang ;
Zhang, Juanjuan ;
Gao, Yuanwen .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (07)
[7]   Universal relations for non-linear magnetoelastic solids [J].
Dorfmann, A ;
Ogden, RW ;
Saccomandi, G .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2004, 39 (10) :1699-1708
[8]  
Holzapfel G., 2000, Nonlinear Solid Mechanics: A Continuum Approach forEnineering
[9]   The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix [J].
Jolly, MR ;
Carlson, JD ;
Munoz, BC ;
Bullions, TA .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 1996, 7 (06) :613-622
[10]   On finitely strained magnetorheological elastomers [J].
Kankanala, SV ;
Triantafyllidis, N .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2004, 52 (12) :2869-2908