Triboelectrification-Induced Self-Assembly of Macro-Sized Polymer Beads on a Nanostructured Surface for Self-Powered Patterning

被引:15
作者
Wang, Ying [1 ,2 ]
Wei, Xiao Yan [1 ,2 ]
Kuang, Shuang Yang [1 ,2 ]
Li, Hua Yang [1 ,2 ]
Chen, Yang Hui [1 ,2 ]
Liang, Fei [1 ,2 ]
Su, Li [1 ,2 ]
Wang, Zhong Lin [1 ,2 ,4 ]
Zhu, Guang [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, CAS Ctr Excellence Nanosci, Beijing 100083, Peoples R China
[2] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100048, Peoples R China
[3] Univ Nottingham Ningbo China, Dept Mech Mat & Mfg Engn, Ningbo 315100, Zhejiang, Peoples R China
[4] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
基金
北京市自然科学基金; 美国国家科学基金会;
关键词
self-assembly; patterning; triboelectrification; electrostatic force; macro-sized beads; APPLIED ELECTRIC-FIELD; CONTACT ELECTRIFICATION; PARTICLES; CRYSTALS; MICROSPHERES; MONOLAYER;
D O I
10.1021/acsnano.7b06758
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here we report an electrostatic-templated self-assembly (ETSA) method for arbitrarily patterning millimeter-sized polymer beads on a nanostructured surface without using an extra voltage source. A patterned electrode underneath an electrification layer generates "potential wells" of the corresponding pattern at predefined window sites, which capture and anchor the beads within the window sites by electrostatic force. Analytical calculation is combined with numerical modeling to derive the electrostatic force acting on the beads, which is in great agreement with experimentally measured values. The generated pattern is solely determined by the predefined underlying electrode, making it arbitrarily switchable by using different electrode patterns. By transferring the assembled beads into an elastomer matrix, possible applications of the ETSA in fabricating optical and flexible displays are demonstrated.
引用
收藏
页码:441 / 447
页数:7
相关论文
共 29 条
[1]   Nanoscale Forces and Their Uses in Self-Assembly [J].
Bishop, Kyle J. M. ;
Wilmer, Christopher E. ;
Soh, Siowling ;
Grzybowski, Bartosz A. .
SMALL, 2009, 5 (14) :1600-1630
[2]   A simple two-dimensional model system to study electrostatic-self-assembly [J].
Cademartiri, Rebecca ;
Stan, Claudiu A. ;
Tran, Vivian M. ;
Wu, Evan ;
Friar, Liam ;
Vulis, Daryl ;
Clark, Logan W. ;
Tricard, Simon ;
Whitesides, George M. .
SOFT MATTER, 2012, 8 (38) :9771-9791
[3]   Selective self-organization of colloids on patterned polyelectrolyte templates [J].
Chen, KM ;
Jiang, XP ;
Kimerling, LC ;
Hammond, PT .
LANGMUIR, 2000, 16 (20) :7825-7834
[4]   Self-assembly of 10-μm-sized objects into ordered three-dimensional arrays [J].
Clark, TD ;
Tien, J ;
Duffy, DC ;
Paul, KE ;
Whitesides, GM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (31) :7677-7682
[5]   Macroscopic Multifunctional Graphene-Based Hydrogels and Aerogels by a Metal Ion Induced Self-Assembly Process [J].
Cong, Huai-Ping ;
Ren, Xiao-Chen ;
Wang, Ping ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (03) :2693-2703
[6]   Controlled Growth of Aligned Polymer Nanowires [J].
Fang, Hao ;
Wu, Wenzhuo ;
Song, Jinhui ;
Wang, Zhong Lin .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (38) :16571-16574
[7]   Assembly of microsized colloidal particles on electrostatic regions patterned through ion beam irradiation [J].
Fudouzi, H ;
Kobayashi, M ;
Shinya, N .
LANGMUIR, 2002, 18 (20) :7648-7652
[8]   Electrostatic self-assembly of macroscopic crystals using contact electrification [J].
Grzybowski, BA ;
Winkleman, A ;
Wiles, JA ;
Brumer, Y ;
Whitesides, GM .
NATURE MATERIALS, 2003, 2 (04) :241-245
[9]   Directed block copolymer self-assembly for nanoelectronics fabrication [J].
Herr, Daniel J. C. .
JOURNAL OF MATERIALS RESEARCH, 2011, 26 (02) :122-139
[10]   CONTACT ELECTRIFICATION INDUCED BY MONOLAYER MODIFICATION OF A SURFACE AND RELATION TO ACID-BASE INTERACTIONS [J].
HORN, RG ;
SMITH, DT ;
GRABBE, A .
NATURE, 1993, 366 (6454) :442-443