Prediction of Cardiovascular Parameters With Supervised Machine Learning From Singapore "I" Vessel Assessment and OCT-Angiography: A Pilot Study

被引:17
作者
Arnould, Louis [1 ,2 ,3 ,4 ]
Guenancia, Charles [5 ,6 ]
Bourredjem, Abderrahmane [2 ,3 ]
Binquet, Christine [2 ,3 ]
Gabrielle, Pierre-Henry [1 ,4 ]
Eid, Petra [1 ]
Baudin, Florian [1 ]
Kawasaki, Ryo [7 ]
Cottin, Yves [5 ,6 ]
Creuzot-Garcher, Catherine [1 ,4 ]
Jacquir, Sabir [8 ]
机构
[1] Univ Hosp, Ophthalmol Dept, 14 Rue Paul Gaffarel, F-21079 Dijon, France
[2] INSERM, CIC1432, Clin Epidemiol Unit, Dijon, France
[3] Dijon Univ Hosp, Clin Invest Ctr, Clin Epidemiol, Clin Trials Unit, Dijon, France
[4] Univ Bourgogne Franche Comte, Ctr Sci Gout & Alimentat, INRAE, CNRS,AgroSup Dijon, Dijon, France
[5] Univ Hosp, Cardiol Dept, Dijon, France
[6] Univ Hosp, PEC 2, Dijon, France
[7] Osaka Univ, Dept Vis Informat, Grad Sch Med, Suita, Osaka, Japan
[8] Univ Paris Saclay, Inst Neurosci Paris Saclay, CNRS, Gif Sur Yvette, France
关键词
retina; supervised machine learning (ML); cardiovascular risk score; optical coherence tomography angiography (OCT-A); OPTICAL COHERENCE TOMOGRAPHY; DIABETIC-RETINOPATHY; FUNDUS IMAGES; RISK; CLASSIFIERS; DISEASE;
D O I
10.1167/tvst.10.13.20
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Purpose: Assessment of cardiovascular risk is the keystone of prevention in cardiovascular disease. The objective of this pilot study was to estimate the cardiovascular risk score (American Hospital Association [AHA] risk score, Syntax risk, and SCORE risk score) with machine learning (ML) model based on retinal vascular quantitative parameters. Methods: We proposed supervised ML algorithm to predict cardiovascular parameters in patients with cardiovascular diseases treated in Dijon University Hospital using quantitative retinal vascular characteristics measured with fundus photography and optical coherence tomography - angiography (OCT-A) scans (alone and combined). To describe retinal microvascular network, we used the Singapore "I" Vessel Assessment (SIVA), which extracts vessel parameters from fundus photography and quantitative OCT-A retinal metrics of superficial retinal capillary plexus. Results: The retinal and cardiovascular data of 144 patients were included. This paper presented a high prediction rate of the cardiovascular risk score. By means of the Naive Bayes algorithm and SIVA + OCT-A data, the AHA risk score was predicted with 81.25% accuracy, the SCORE risk with 75.64% accuracy, and the Syntax score with 96.53% of accuracy. Conclusions: Performance of these algorithms demonstrated in this preliminary study that ML algorithms applied to quantitative retinal vascular parameters with SIVA software and OCT-A were able to predict cardiovascular scores with a robust rate. Quantitative retinal vascular biomarkers with the ML strategy might provide valuable data to implement predictive model for cardiovascular parameters. Translational Relevance: Small data set of quantitative retinal vascular parameters with fundus and with OCT-A can be used with ML learning to predict cardiovascular parameters.
引用
收藏
页数:12
相关论文
共 37 条
[1]   Automated Analysis of Retinal Images for Detection of Referable Diabetic Retinopathy [J].
Abramoff, Michael D. ;
Folk, James C. ;
Han, Dennis P. ;
Walker, Jonathan D. ;
Williams, David F. ;
Russell, Stephen R. ;
Massin, Pascale ;
Cochener, Beatrice ;
Gain, Philippe ;
Tang, Li ;
Lamard, Mathieu ;
Moga, Daniela C. ;
Quellec, Gwenole ;
Niemeijer, Meindert .
JAMA OPHTHALMOLOGY, 2013, 131 (03) :351-357
[2]   Machine Learning Methods Improve Prognostication, Identify Clinically Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients [J].
Ahmad, Tariq ;
Lund, Lars H. ;
Rao, Pooja ;
Ghosh, Rohit ;
Warier, Prashant ;
Vaccaro, Benjamin ;
Dahlstrom, Ulf ;
O'Connor, Christopher M. ;
Felker, G. Michael ;
Desai, Nihar R. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2018, 7 (08)
[3]   Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants [J].
Alaa, Ahmed M. ;
Bolton, Thomas ;
Di Angelantonio, Emanuele ;
Rudd, James H. F. ;
van der Schaar, Mihaela .
PLOS ONE, 2019, 14 (05)
[4]  
ALAN G, 2019, SCI REP-UK, V9, P1
[5]   Cardiovascular Event Prediction by Machine Learning The Multi-Ethnic Study of Atherosclerosis [J].
Ambale-Venkatesh, Bharath ;
Yang, Xiaoying ;
Wu, Colin O. ;
Liu, Kiang ;
Hundley, W. Gregory ;
McClelland, Robyn ;
Gomes, Antoinette S. ;
Folsom, Aaron R. ;
Shea, Steven ;
Guallar, Eliseo ;
Bluemke, David A. ;
Lima, Joao A. C. .
CIRCULATION RESEARCH, 2017, 121 (09) :1092-+
[6]  
[Anonymous], 2017, PLOS ONE
[7]   The EYE-MI Pilot Study: A Prospective Acute Coronary Syndrome Cohort Evaluated With Retinal Optical Coherence Tomography Angiography [J].
Arnould, Louis ;
Guenancia, Charles ;
Azemar, Arthur ;
Alan, Guillaume ;
Pitois, Stephane ;
Bichat, Florence ;
Zeller, Marianne ;
Gabrielle, Pierre-Henry ;
Bron, Alain M. ;
Creuzot-Garcher, Catherine ;
Cottin, Yves .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (10) :4299-4306
[8]   Association between the retinal vascular network with Singapore "I" Vessel Assessment (SIVA) software, cardiovascular history and risk factors in the elderly: The Montrachet study, population-based study [J].
Arnould, Louis ;
Binquet, Christine ;
Guenancia, Charles ;
Alassane, Seydou ;
Kawasaki, Ryo ;
Daien, Vincent ;
Tzourie, Christophe ;
Kawasaki, Yumiko ;
Bourredjem, Abderrahmane ;
Bron, Alain ;
Creuzot-Garcher, Catherine .
PLOS ONE, 2018, 13 (04)
[9]   Bayesian machine learning classifiers for combining structural and functional measurements to classify healthy and glaucomatous eyes [J].
Bowd, Christopher ;
Hao, Jiucang ;
Tavares, Ivan M. ;
Medeiros, Felipe A. ;
Zangwill, Linda M. ;
Lee, Te-Won ;
Sample, Pamela A. ;
Weinreb, Robert N. ;
Goldbaum, Michael H. .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2008, 49 (03) :945-953
[10]   Automated Grading of Age-Related Macular Degeneration From Color Fundus Images Using Deep Convolutional Neural Networks [J].
Burlina, Philippe M. ;
Joshi, Neil ;
Pekala, Michael ;
Pacheco, Katia D. ;
Freund, David E. ;
Bressler, Neil M. .
JAMA OPHTHALMOLOGY, 2017, 135 (11) :1170-1176