An Improved In-Scene Atmospheric Retrieval and Correction Algorithm for Long-Wavelength Infrared Hyperspectral Imagery

被引:4
作者
Bernstein, Lawrence
Gelbord, Jonathan [1 ]
Adler-Golden, Steven [1 ]
Guler, Nevzat [1 ]
Sundberg, Robert [1 ]
Conforti, Patrick [2 ]
机构
[1] Spectral Sci Inc, 4 Fourth Ave, Burlington, MA 01803 USA
[2] Aerosp Corp, 14745 Lee Rd, Chantilly, VA 20151 USA
来源
IMAGING SPECTROMETRY XXII: APPLICATIONS, SENSORS, AND PROCESSING | 2018年 / 10768卷
关键词
hyperspectral; atmospheric correction; QUAC-IR; sensor; algorithm; LWIR; COMPENSATION;
D O I
10.1117/12.2321116
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We describe a new algorithm, QUAC-IR (QUick Atmospheric Correction in the InfraRed), for automated, fast, atmospheric correction of LWIR (Long Wavelength InfraRed) hyperspectral imagery (HSI) and multi-spectral imagery (MSI) in the similar to 7-14 mm spectral region. QUAC-IR is an in-scene based algorithm, similar to the widely used ISAC (In-Scene Atmospheric Correction) algorithm. It improves upon the ISAC approach in several key ways, including providing absolute, versus relative, sensor-to-ground transmittances and radiances, as well as an estimate of the atmospheric downwelling sky radiance. The latter is important for retrieving emissivity from a reflective (i.e., non-blackbody) pixel. The key aspect of QUAC-IR is that it explicitly searches for blackbody pixels using an efficient approach involving a small number of spectral channels in which the atmospheric radiative transfer is dominated by the water continuum. This allows for fast and simplified Beer's Law (i.e., exponential) scaling of the path transmittance and radiance based on a compact library of pre-computed reference values. We apply QUAC-IR to well-calibrated data from the SEABASS(1) and MAKO(2) HSI sensors. The results are compared to those from a first-principles physics-based atmospheric code, FLAASH-IR.
引用
收藏
页数:13
相关论文
共 15 条
[1]   Long-wave infrared surface reflectance spectra retrieved from Telops Hyper-Cam imagery [J].
Adler-Golden, S. M. ;
Conforti, P. ;
Gagnon, M. ;
Tremblay, P. ;
Chamberland, M. .
ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XX, 2014, 9088
[2]  
Adler-Golden S.M., 2014, P 6 WHISPERS C LAUS
[3]   MODTRAN5: A reformulated atmospheric band model with auxiliary species and practical multiple scattering options [J].
Berk, A ;
Anderson, GP ;
Acharya, PK ;
Bernstein, LS ;
Muratov, L ;
Lee, J ;
Fox, M ;
Adler-Golden, SM ;
Chetwynd, JH ;
Hoke, ML ;
Lockwood, RB ;
Cooley, TW ;
Gardner, JA .
MULTISPECTRAL AND HYPERSPECTRAL REMOTE SENSING INSTRUMENTS AND APPLICATIONS II, 2005, 5655 :88-95
[4]  
Boonmee Marvin, 2006, Proceedings of the SPIE - The International Society for Optical Engineering, V6233, p62331V, DOI 10.1117/12.665899
[5]  
Borel C. C., 1997, P 1 JPL WORKSH REM S
[6]  
BOREL CC, 2003, 28 ANN GOMACTECH C H
[7]  
Gillespie AR, 1999, NAS531372
[8]   Autonomous atmospheric compensation (AAC) of high resolution hyperspectral thermal infrared remote-sensing imagery [J].
Gu, DG ;
Gillespie, AR ;
Kahle, AB ;
Palluconi, FD .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (06) :2557-2570
[9]  
Hackwell J.A., 1996, Proceedings of SPIE, V2819
[10]   Atmospheric compensation for surface temperature and emissivity separation [J].
Hernandez-Baquero, ED ;
Schott, JR .
ALGORITHMS FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY VI, 2000, 4049 :400-410