Heterogeneous Freezing of Carbon Nanotubes: A Model System for Pore Condensation and Freezing in the Atmosphere

被引:10
作者
Alstadt, Valerie J. [1 ,2 ]
Dawson, Joseph Nelson [1 ]
Losey, Delanie J. [1 ]
Sihvonen, Sarah K. [1 ,3 ]
Freedman, Miriam Arak [1 ]
机构
[1] Penn State Univ, Dept Chem, University Pk, PA 16802 USA
[2] US Army, Edgewood Chem & Biol Ctr, Aberdeen Proving Ground, MD 21005 USA
[3] Syngenta, Greensboro, NC 27419 USA
关键词
ICE NUCLEATION; MINERAL DUST; WATER; SOOT; PARTICLES; AEROSOL; SITES;
D O I
10.1021/acs.jpca.7b06359
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Heterogeneous ice nucleation is an important mechanism for cloud formation in the upper troposphere. Recently, pores on atmospheric particles have been proposed to play a significant role in ice nucleation. To understand how ice nucleation occurs in idealized pores, we characterized the immersion freezing activity of various sizes of carbon nanotubes. Carbon nanotubes are used both as a model for pores and proxy for soot particles. We determined that carbon nanotubes with inner diameters between 2 and 3 nm exhibit the highest ice nucleation activity. Implications for the freezing behavior of porous materials and nucleation on soot particles will be discussed.
引用
收藏
页码:8166 / 8175
页数:10
相关论文
共 47 条
[1]   PRECIPITATION CHEMISTRY IN CENTRAL AMAZONIA [J].
ANDREAE, MO ;
TALBOT, RW ;
BERRESHEIM, H ;
BEECHER, KM .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1990, 95 (D10) :16987-16999
[2]   The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds [J].
Atkinson, James D. ;
Murray, Benjamin J. ;
Woodhouse, Matthew T. ;
Whale, Thomas F. ;
Baustian, Kelly J. ;
Carslaw, Kenneth S. ;
Dobbie, Steven ;
O'Sullivan, Daniel ;
Malkin, Tamsin L. .
NATURE, 2013, 498 (7454) :355-358
[3]   MICROPORE SIZE DISTRIBUTIONS OF CLAY MINERAL SYSTEMS [J].
AYLMORE, LAG ;
QUIRK, JP .
JOURNAL OF SOIL SCIENCE, 1967, 18 (01) :1-+
[4]   Atmospheric ice nuclei in the Eyjafjallajokull volcanic ash plume [J].
Bingemer, H. ;
Klein, H. ;
Ebert, M. ;
Haunold, W. ;
Bundke, U. ;
Herrmann, T. ;
Kandler, K. ;
Mueller-Ebert, D. ;
Weinbruch, S. ;
Judt, A. ;
Weber, A. ;
Nillius, B. ;
Ardon-Dryer, K. ;
Levin, Z. ;
Curtius, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (02) :857-867
[5]   Immersion mode heterogeneous ice nucleation by an illite rich powder representative of atmospheric mineral dust [J].
Broadley, S. L. ;
Murray, B. J. ;
Herbert, R. J. ;
Atkinson, J. D. ;
Dobbie, S. ;
Malkin, T. L. ;
Condliffe, E. ;
Neve, L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (01) :287-307
[6]   Adsorption and Structure of Water on Kaolinite Surfaces: Possible Insight into Ice Nucleation from Grand Canonical Monte Carlo Calculations [J].
Croteau, T. ;
Bertram, A. K. ;
Patey, G. N. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (43) :10708-10712
[7]  
DEMOTT PJ, 1990, J APPL METEOROL, V29, P1072, DOI 10.1175/1520-0450(1990)029<1072:AESOIN>2.0.CO
[8]  
2
[9]   A laboratory study of the effects of a kerosene-burner exhaust on ice nucleation and the evaporation rate of ice crystals [J].
Diehl, K ;
Mitra, SK .
ATMOSPHERIC ENVIRONMENT, 1998, 32 (18) :3145-3151
[10]   CAPILLARITY AND WETTING OF CARBON NANOTUBES [J].
DUJARDIN, E ;
EBBESEN, TW ;
HIURA, H ;
TANIGAKI, K .
SCIENCE, 1994, 265 (5180) :1850-1852