On type II codes over F4

被引:16
作者
Betsumiya, K [1 ]
Gulliver, TA
Harada, M
Munemasa, A
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
[2] Univ Victoria, Dept Elect & Comp Engn, Victoria, BC V8W 3P6, Canada
[3] Yamagata Univ, Dept Math Sci, Yamagata 9908560, Japan
[4] Kyushu Univ, Grad Sch Math, Fukuoka 8128581, Japan
关键词
euclidean self-dual codes over F-4; type II codes;
D O I
10.1109/18.945245
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently,Type II codes over F-4 have been introduced as Euclidean self-dual codes with the property that all Lee weights are divisible by four. In this paper, a number of properties of Type II codes are presented. We construct several extremal Type II codes and a number of extremal Type I codes. It is also shown that there are seven Type II codes of length 12, up to permutation equivalence.
引用
收藏
页码:2242 / 2248
页数:7
相关论文
共 16 条
[1]  
BETSUMIYA K, 2001, LECT NOTES COMPUTER
[2]   QUATERNARY QUADRATIC RESIDUE CODES AND UNIMODULAR LATTICES [J].
BONNECAZE, A ;
SOLE, P ;
CALDERBANK, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (02) :366-377
[3]   WEIGHT ENUMERATORS OF SELF-DUAL CODES [J].
BRUALDI, RA ;
PLESS, VS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (04) :1222-1225
[4]   A NEW UPPER BOUND ON THE MINIMAL DISTANCE OF SELF-DUAL CODES [J].
CONWAY, JH ;
SLOANE, NJA .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (06) :1319-1333
[5]   Extremal binary self-dual codes [J].
Dougherty, ST ;
Gulliver, TA ;
Harada, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (06) :2036-2047
[6]  
GABORIT P, TYPE 2 CODES F4
[7]   On a class of self-dual codes derived from quadratic residues [J].
Gulliver, TA ;
Senkevitch, N .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) :701-702
[8]  
HARADA M, 1998, AUSTRALASIAN J COMBI, V17, P133
[9]  
HUFFMAN WC, 1979, DISCRETE MATH, V26, P129, DOI 10.1016/0012-365X(79)90119-5
[10]  
Karlin M., 1978, Information and Control, V38, P148, DOI 10.1016/S0019-9958(78)90158-4