New result for nonlinear Choquard equations: Doubly critical case

被引:16
作者
Su, Yu [1 ]
机构
[1] Anhui Univ Sci & Technol, Sch Math & Big Data, Huainan 232001, Anhui, Peoples R China
关键词
Choquard equation; Hardy-Littlewood-Sobolev critical exponent; Critical exponent;
D O I
10.1016/j.aml.2019.106092
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the following equation: -Delta u + u = (I-alpha * F(u))F'(u) in R-N, where N >= 5, alpha is an element of (0, N - 4), and I-alpha is the Riesz potential, and F(u) :=1/2(alpha)(#) vertical bar u vertical bar(2 alpha#) + 1/2(alpha)(#)vertical bar u vertical bar(2 alpha#), where 2(alpha)(#) = N+alpha/N and 2(alpha)(*) = N+alpha/N-2 are lower and upper critical exponents in the sense of the Hardy-Littlewood-Sobolev inequality. By using the refined Sobolev inequality with Morrey norm and variational methods, we establish the existence of nonnegative solution for above equation. Our result extends the result in Seok (2018). (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 16 条
[1]   Singularly perturbed critical Choquard equations [J].
Alves, Claudianor O. ;
Gao, Fashun ;
Squassina, Marco ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (07) :3943-3988
[2]   Choquard-type equations with Hardy-Littlewood Sobolev upper-critical growth [J].
Cassani, Daniele ;
Zhang, Jianjun .
ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) :1184-1212
[3]   Multiple solutions for the Schrodinger equations with sign-changing potential and Hartree nonlinearity [J].
Che, Guofeng ;
Chen, Haibo .
APPLIED MATHEMATICS LETTERS, 2018, 81 :21-26
[4]   The one-dimensional Schrodinger-Newton equations [J].
Choquard, Philippe ;
Stubbe, Joachim .
LETTERS IN MATHEMATICAL PHYSICS, 2007, 81 (02) :177-184
[5]  
Choquard P, 2008, DIFFER INTEGRAL EQU, V21, P665
[6]   On fractional Choquard equations [J].
d'Avenia, Pietro ;
Siciliano, Gaetano ;
Squassina, Marco .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08) :1447-1476
[7]   On nonlocal Choquard equations with Hardy-Littlewood-Sobolev critical exponents [J].
Gao, Fashun ;
Yang, Minbo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) :1006-1041
[8]  
LIEB EH, 1977, STUD APPL MATH, V57, P93
[9]  
Lieb EH., 2001, Analysis, Graduate Studies in Mathematics, V14
[10]   A guide to the Choquard equation [J].
Moroz, Vitaly ;
Van Schaftingen, Jean .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (01) :773-813