This work is related to the so-called non-conventional finite element formulations. Essentially, a methodology for the enrichment of the initial approximation which is typical of the meshless methods and based on the clouds concept is introduced in the hybrid-Trefftz formulation for plane elasticity. The formulation presented allows for the approximation and direct enrichment of two independent fields: stresses in the domains and displacements on the boundaries of the elements. Defined by a set of elements and interior boundaries sharing a common node, the cloud notion is employed to select the enrichment support for the approximation fields. The numerical analysis performed reveals an excellent performance of the resulting formulation, characterized by the good approximation ability and a reduced computational effort. Copyright (C) 2009 John Wiley & Sons, Ltd.