Minimizing Graphene Defects Enhances Titania Nanocomposite-Based Photocatalytic Reduction of CO2 for Improved Solar Fuel Production

被引:463
作者
Liang, Yu Teng [2 ]
Vijayan, Baiju K. [1 ]
Gray, Kimberly A. [1 ]
Hersam, Mark C. [2 ,3 ,4 ]
机构
[1] Northwestern Univ, Dept Civil & Environm Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[4] Northwestern Univ, Dept Med, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
Photocatalysis; graphene; defect; titania; nanocomposite; solar fuel; TIO2-GRAPHENE NANOCOMPOSITES; CARBON-DIOXIDE; OXIDE; EXFOLIATION; SUSPENSIONS;
D O I
10.1021/nl2012906
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With its unique electronic and optical properties, graphene is proposed to functionalize and tailor titania photocatalysts for improved reactivity. The two major solution-based pathways for producing graphene, oxidation-reduction and solvent exfoliation, result in nanoplatelets with different defect densities. Herein, we show that nanocomposites based on the less defective solvent-exfoliated graphene exhibit a significantly larger enhancement in CO2 photoreduction, especially under visible light. This counterintuitive result is attributed to their superior electrical mobility, which facilitates the diffusion of photoexcited electrons to reactive sites.
引用
收藏
页码:2865 / 2870
页数:6
相关论文
共 33 条
  • [1] Photoluminescence of anatase and rutile TiO2 particles
    Abazovic, Nadica D.
    Comor, Mirjana I.
    Dramicanin, Miroslav D.
    Jovanovic, Dragana J.
    Ahrenkiel, S. Phillip
    Nedeljkovic, Jovan M.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (50) : 25366 - 25370
  • [2] Banhart F, 2011, ACS NANO, V5, P26, DOI [10.1021/nn102598m, 10.1016/B978-0-08-102053-1.00005-3]
  • [3] Flash Reduction and Patterning of Graphite Oxide and Its Polymer Composite
    Cote, Laura J.
    Cruz-Silva, Rodolfo
    Huang, Jiaxing
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (31) : 11027 - 11032
  • [4] A One-Step, Solvothermal Reduction Method for Producing Reduced Graphene Oxide Dispersions in Organic Solvents
    Dubin, Sergey
    Gilje, Scott
    Wang, Kan
    Tung, Vincent C.
    Cha, Kitty
    Hall, Anthony S.
    Farrar, Jabari
    Varshneya, Rupal
    Yang, Yang
    Kaner, Richard B.
    [J]. ACS NANO, 2010, 4 (07) : 3845 - 3852
  • [5] Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material
    Eda, Goki
    Fanchini, Giovanni
    Chhowalla, Manish
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (05) : 270 - 274
  • [6] ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE
    FUJISHIMA, A
    HONDA, K
    [J]. NATURE, 1972, 238 (5358) : 37 - +
  • [7] Gao W, 2009, NAT CHEM, V1, P403, DOI [10.1038/NCHEM.281, 10.1038/nchem.281]
  • [8] Electronic transport properties of individual chemically reduced graphene oxide sheets
    Gomez-Navarro, Cristina
    Weitz, R. Thomas
    Bittner, Alexander M.
    Scolari, Matteo
    Mews, Alf
    Burghard, Marko
    Kern, Klaus
    [J]. NANO LETTERS, 2007, 7 (11) : 3499 - 3503
  • [9] Atomic Structure of Reduced Graphene Oxide
    Gomez-Navarro, Cristina
    Meyer, Jannik C.
    Sundaram, Ravi S.
    Chuvilin, Andrey
    Kurasch, Simon
    Burghard, Marko
    Kern, Klaus
    Kaiser, Ute
    [J]. NANO LETTERS, 2010, 10 (04) : 1144 - 1148
  • [10] Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation
    Green, Alexander A.
    Hersam, Mark C.
    [J]. NANO LETTERS, 2009, 9 (12) : 4031 - 4036