Yamabe classification and prescribed scalar curvature in the asymptotically Euclidean setting

被引:10
作者
Dilts, James [1 ]
Maxwell, David [2 ]
机构
[1] Univ Calif San Diego, Dept Math, 9500 Gilman Dr 0112, La Jolla, CA 92093 USA
[2] Univ Alaska Fairbanks, Dept Math & Stat, POB 756660, Fairbanks, AK 99775 USA
基金
美国国家科学基金会;
关键词
EINSTEIN CONSTRAINT EQUATIONS; KUDRJAVCEV TYPE; MANIFOLDS; METRICS; SPACES;
D O I
10.4310/CAG.2018.v26.n5.a5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a necessary and sufficient condition for an asymptotically Euclidean manifold to be conformally related to one with specified nonpositive scalar curvature: the zero set of the desired scalar curvature must have a positive Yamabe invariant, as defined in the article. We show additionally how the sign of the Yamabe invariant of a measurable set can be computed from the sign of certain generalized "weighted" eigenvalues of the conformal Laplacian. Using the prescribed scalar curvature result we give a characterization of the Yamabe classes of asymptotically Euclidean manifolds. We also show that the Yamabe class of an asymptotically Euclidean manifold is the same as the Yamabe class of its conformal compactification.
引用
收藏
页码:1127 / 1168
页数:42
相关论文
共 20 条
[1]  
[Anonymous], 1968, Ann. Scuola Norm. Sup. Pisa (3)
[2]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[3]  
Aubin T., 1998, Springer Monographs in Mathematics
[4]   THE MASS OF AN ASYMPTOTICALLY FLAT MANIFOLD [J].
BARTNIK, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1986, 39 (05) :661-693
[5]   SCALAR CURVATURE FUNCTIONS IN A CONFORMAL CLASS OF METRICS AND CONFORMAL TRANSFORMATIONS [J].
BOURGUIGNON, JP ;
EZIN, JP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 301 (02) :723-736
[6]  
CANTOR M, 1981, COMPOS MATH, V43, P317
[7]  
Dilts J., 2016, ARXIV160900751
[8]   CONFORMAL METRICS WITH PRESCRIBED SCALAR CURVATURE [J].
ESCOBAR, JF ;
SCHOEN, RM .
INVENTIONES MATHEMATICAE, 1986, 86 (02) :243-254
[9]   THE STRUCTURE OF COMPLETE STABLE MINIMAL-SURFACES IN 3-MANIFOLDS OF NONNEGATIVE SCALAR CURVATURE [J].
FISCHERCOLBRIE, D ;
SCHOEN, R .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (02) :199-211
[10]   Yamabe Numbers and the Brill-Cantor Criterion [J].
Friedrich, Helmut .
ANNALES HENRI POINCARE, 2011, 12 (05) :1019-1025