Preparing Bethe Ansatz Eigenstates on a Quantum Computer

被引:22
作者
Van Dyke, John S. [1 ]
Barron, George S. [1 ]
Mayhall, Nicholas J. [2 ]
Barnes, Edwin [1 ]
Economou, Sophia E. [1 ]
机构
[1] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA
[2] Virginia Tech, Dept Chem, Blacksburg, VA 24061 USA
来源
PRX QUANTUM | 2021年 / 2卷 / 04期
关键词
ANTIFERROMAGNETIC CHAIN; COMPUTATION; ALGORITHMS; SIMULATION; DYNAMICS; SYSTEMS; STATES;
D O I
10.1103/PRXQuantum.2.040329
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Several quantum many-body models in one dimension possess exact solutions via the Bethe ansatz method, which has been highly successful for understanding their behavior. Nevertheless, there remain physical properties of such models for which analytic results are unavailable and which are also not well described by approximate numerical methods. Preparing Bethe ansatz eigenstates directly on a quantum computer would allow straightforward extraction of these quantities via measurement. We present a quantum algorithm for preparing Bethe ansatz eigenstates of the spin-1/2 XXZ spin chain that correspond to real-valued solutions of the Bethe equations. The algorithm is polynomial in the number of T gates and the circuit depth, with modest constant prefactors. Although the algorithm is probabilistic, with a success rate that decreases with increasing eigenstate energy, we employ amplitude amplification to boost the success probability. The resource requirements for our approach are lower than for other state-of-the-art quantum simulation algorithms for small error-corrected devices and thus may offer an alternative and computationally less demanding demonstration of quantum advantage for physically relevant problems.
引用
收藏
页数:15
相关论文
共 80 条
  • [1] Abraham H., 2019, QISKIT OPEN SOURCE F, DOI DOI 10.5281/ZENODO.2562110
  • [2] Simulations of many-body Fermi systems on a universal quantum computer
    Abrams, DS
    Lloyd, S
    [J]. PHYSICAL REVIEW LETTERS, 1997, 79 (13) : 2586 - 2589
  • [3] [Anonymous], 2004, P 36 ANN ACM S THEOR
  • [4] [Anonymous], 2004, QUANTUM PHYS ONE DIM
  • [5] [Anonymous], 1999, Thermodynamics of One-Dimensional Solvable Models
  • [6] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [7] Simulated quantum computation of molecular energies
    Aspuru-Guzik, A
    Dutoi, AD
    Love, PJ
    Head-Gordon, M
    [J]. SCIENCE, 2005, 309 (5741) : 1704 - 1707
  • [8] Babbush R., 2020, ARXIV201104149
  • [9] Encoding Electronic Spectra in Quantum Circuits with Linear T Complexity
    Babbush, Ryan
    Gidney, Craig
    Berry, Dominic W.
    Wiebe, Nathan
    McClean, Jarrod
    Paler, Alexandra
    Fowler, Austin
    Neven, Hartmut
    [J]. PHYSICAL REVIEW X, 2018, 8 (04):
  • [10] Exponentially more precise quantum simulation of fermions in second quantization
    Babbush, Ryan
    Berry, Dominic W.
    Kivlichan, Ian D.
    Wei, Annie Y.
    Love, Peter J.
    Aspuru-Guzik, Alan
    [J]. NEW JOURNAL OF PHYSICS, 2016, 18