Relaxation, chaos, and thermalization in a three-mode model of a Bose-Einstein condensate

被引:25
作者
Garcia-March, M. A. [1 ]
van Frank, S. [2 ]
Bonneau, M. [2 ]
Schmiedmayer, J. [2 ]
Lewenstein, M. [1 ,3 ]
Santos, Lea F. [4 ]
机构
[1] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Foton, Av Carl Friedrich Gauss 3, E-08860 Castelldefels, Barcelona, Spain
[2] TU Wien, Atominst, Vienna Ctr Quantum Sci & Technol, Stadionallee 2, A-1020 Vienna, Austria
[3] ICREA, Pg Lluis Co 23, E-08010 Barcelona, Spain
[4] Yeshiva Univ, Dept Phys, New York, NY 10016 USA
关键词
relaxation in isolated quantum systems; thermalization; quantum chaos; Bose-Einstein condensates; TOPOLOGICAL COHERENT MODES; QUANTUM PHASE-TRANSITIONS; SYSTEMS; ENTANGLEMENT; EQUILIBRIUM; PROPAGATION; DYNAMICS; COLLAPSE; REVIVAL; STATES;
D O I
10.1088/1367-2630/aaed68
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the complex quantum dynamics of a system of many interacting atoms in an elongated anharmonic trap. The system is initially in a Bose-Einstein condensed state, well described by Thomas-Fermi profile in the elongated direction and the ground state in the transverse directions. After a sudden quench to a coherent superposition of the ground and lowest energy transverse modes, quantum dynamics starts. We describe this process employing a three-mode many-body model. The experimental realization of this system displays decaying oscillations of the atomic density distribution. While a mean-field description predicts perpetual oscillations of the atomic density distribution, our quantum many-body model exhibits a decay of the oscillations for sufficiently strong atomic interactions. We associate this decay with the fragmentation of the condensate during the evolution. The decay and fragmentation are also linked with the approach of the many-body model to the chaotic regime. The approach to chaos lifts degeneracies and increases the complexity of the eigenstates, enabling the relaxation to equilibrium and the onset of thermalization. We verify that the damping time and quantum signatures of chaos show similar dependences on the interaction strength and on the number of atoms.
引用
收藏
页数:20
相关论文
共 84 条
[1]   Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems [J].
Alon, Ofir E. ;
Streltsov, Alexej I. ;
Cederbaum, Lorenz S. .
PHYSICAL REVIEW A, 2008, 77 (03)
[2]   LEVEL CLUSTERING IN REGULAR SPECTRUM [J].
BERRY, MV ;
TABOR, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 356 (1686) :375-394
[3]  
Bonneau M, 2018, UNPUB
[4]   Quantum chaos and thermalization in isolated systems of interacting particles [J].
Borgonovi, F. ;
Izrailev, F. M. ;
Santos, L. F. ;
Zelevinsky, V. G. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 626 :1-58
[5]  
Breuer H.-P., 2007, The Theory of Open Quantum Systems
[6]   RANDOM-MATRIX PHYSICS - SPECTRUM AND STRENGTH FLUCTUATIONS [J].
BRODY, TA ;
FLORES, J ;
FRENCH, JB ;
MELLO, PA ;
PANDEY, A ;
WONG, SSM .
REVIEWS OF MODERN PHYSICS, 1981, 53 (03) :385-479
[7]   Quantum speed limit and optimal control of many-boson dynamics [J].
Brouzos, Ioannis ;
Streltsov, Alexej I. ;
Negretti, Antonio ;
Said, Ressa S. ;
Caneva, Tommaso ;
Montangero, Simone ;
Calarco, Tommaso .
PHYSICAL REVIEW A, 2015, 92 (06)
[8]   Vibrational state inversion of a Bose-Einstein condensate: optimal control and state tomography [J].
Buecker, Robert ;
Berrada, Tarik ;
van Frank, Sandrine ;
Schaff, Jean-Francois ;
Schumm, Thorsten ;
Schmiedmayer, Joerg ;
Jaeger, Georg ;
Grond, Julian ;
Hohenester, Ulrich .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2013, 46 (10)
[9]  
Bücker R, 2011, NAT PHYS, V7, P608, DOI [10.1038/nphys1992, 10.1038/NPHYS1992]
[10]   Excited state quantum phase transitions in many-body systems [J].
Caprio, M. A. ;
Cejnar, P. ;
Iachello, F. .
ANNALS OF PHYSICS, 2008, 323 (05) :1106-1135