Difference-Difference Synchronizations of Chaotic and Hyperchaotic Systems

被引:5
作者
Dongmo, Eric Donald [1 ,2 ,3 ,4 ]
Ojo, Kayode Stephen [2 ]
Woafo, Paul [3 ,4 ]
Njah, Abdulahi Ndzi [2 ]
机构
[1] Univ Buea, Coll Technol, Dept Mech Engn, POB 63, Buea, Cameroon
[2] Univ Lagos, Dept Phys, Lagos, Nigeria
[3] Univ Yaounde I, Fac Sci, Lab Modeling & Simulat Engn Biomimet & Prototypes, Yaounde, Cameroon
[4] Univ Yaounde I, Fac Sci, TWAS Res Unit, Dept Phys, Yaounde, Cameroon
关键词
Difference-difference synchronization; Chaotic systems; Hyperchaotic systems; Backstepping technique; COMBINATION-COMBINATION SYNCHRONIZATION; PROJECTIVE SYNCHRONIZATION;
D O I
10.5890/JAND.2022.06.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper investigates a new synchronization Difference-Difference Synchronization (DDS), based on drive response configuration via the active backstepping technique. In this new synchronization scheme, the difference between the state variables of two master systems synchronizes with the difference between the state variables of two response systems. The proposed DDS scheme is investigated using four chaotic systems and four hyperchaotic systems evolving from different initial conditions. The analytical and numerical simulations show the feasibility and the effectiveness of the proposed synchronization scheme. (C)2022 L&H Scientific Publishing, LLC. All rights reserved.
引用
收藏
页码:487 / 497
页数:11
相关论文
共 26 条
[1]   Control of chaos: Methods and applications. II. Applications [J].
Andrievskii, BR ;
Fradkov, AL .
AUTOMATION AND REMOTE CONTROL, 2004, 65 (04) :505-533
[2]   Chaos and phase synchronization in ecological systems [J].
Blasius, B ;
Stone, L .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (10) :2361-2380
[3]  
Chen G., 1998, CHAOS ORDER
[4]   Difference Synchronization of Identical and Nonidentical Chaotic and Hyperchaotic Systems of Different Orders Using Active Backstepping Design [J].
Dongmo, Eric Donald ;
Ojo, Kayode Stephen ;
Woafo, Paul ;
Njah, Abdulahi Ndzi .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2018, 13 (05)
[5]   Synchronization in networks with random interactions: Theory and applications [J].
Feng, JF ;
Jirsa, VK ;
Ding, MZ .
CHAOS, 2006, 16 (01)
[6]   Phase synchronization and synchronization frequency of two-coupled van der Pol oscillators with delayed coupling [J].
Gholizade-Narm, Hossein ;
Azemi, Asad ;
Khademi, Morteza .
CHINESE PHYSICS B, 2013, 22 (07)
[7]   Projective synchronization of new hyperchaotic system with fully unknown parameters [J].
Ghosh, Dibakar ;
Bhattacharya, Sikha .
NONLINEAR DYNAMICS, 2010, 61 (1-2) :11-21
[8]   Synchronization of mutually versus unidirectionally coupled chaotic semiconductor lasers [J].
Gross, Noam ;
Kinzel, Wolfgang ;
Kanter, Ido ;
Rosenbluh, Michael ;
Khaykovich, Lev .
OPTICS COMMUNICATIONS, 2006, 267 (02) :464-468
[9]   Anti-Synchronization of Chaotic Systems via Adaptive Sliding Mode Control [J].
Jawaada, Wafaa ;
Noorani, M. S. M. ;
Al-sawalha, M. Mossa .
CHINESE PHYSICS LETTERS, 2012, 29 (12)
[10]   Function projective synchronization of identical and non-identical modified finance and Shimizu-Morioka systems [J].
Kareem, S. O. ;
Ojo, K. S. ;
Njah, A. N. .
PRAMANA-JOURNAL OF PHYSICS, 2012, 79 (01) :71-79