Joint law of an Ornstein-Uhlenbeck process and its supremum

被引:4
作者
Blanchet-Scalliet, Christophette [1 ,3 ]
Dorobantu, Diana [1 ,3 ]
Gay, Laura [1 ,2 ]
机构
[1] Univ Lyon, Lyon, France
[2] Inst Camille Jordan, CNRS, UMR 5208, Ecole Cent Lyon, Villeurbanne, France
[3] Univ Lyon 1, ISFA, LSAF, EA 2429, Lyon, France
关键词
Ornstein-Uhlenbeck process; joint law; supremum; endpoint; Fokker-Planck equation; DENSITY;
D O I
10.1017/jpr.2020.22
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
LetXbe an Ornstein-Uhlenbeck process driven by a Brownian motion. We propose an expression for the joint density / distribution function of the process and its running supremum. This law is expressed as an expansion involving parabolic cylinder functions. Numerically, we obtain this law faster with our expression than with a Monte Carlo method. Numerical applications illustrate the interest of this result.
引用
收藏
页码:541 / 558
页数:18
相关论文
共 20 条
  • [1] Representations of the first hitting time density of an Ornstein-Uhlenbeck process
    Alili, A
    Patie, P
    Pedersen, JL
    [J]. STOCHASTIC MODELS, 2005, 21 (04) : 967 - 980
  • [2] [Anonymous], 1972, DOVER BOOKS MATH
  • [3] [Anonymous], 2018, ARXIV181002390
  • [4] [Anonymous], 1989, Methods of solution and applications
  • [5] Borodin A, 2015, PROBABILITY ITS APPL
  • [6] Boyce W.E., 2008, Elementary Differential Equations and Boundary Value Problems
  • [7] Brezis H., 1983, ANAL FONCTIONELLE TH
  • [8] Existence and regularity of law density of a pair (diffusion, first component running maximum)
    Coutin, Laure
    Pontier, Monique
    [J]. STATISTICS & PROBABILITY LETTERS, 2019, 153 : 130 - 138
  • [9] JOINT DISTRIBUTION OF A LEVY PROCESS AND ITS RUNNING SUPREMUM
    Coutin, Laure
    Pontier, Monique
    Ngom, Waly
    [J]. JOURNAL OF APPLIED PROBABILITY, 2018, 55 (02) : 488 - 512
  • [10] Delarue F., 2013, HAL00870991