共 50 条
Experimental investigation on the self-ignition behaviour of coal dust accumulations in oxy-fuel combustion system
被引:59
作者:
Wu, Dejian
[1
]
Huang, Xinyan
[2
]
Norman, Frederik
[3
]
Verplaetsen, Filip
[3
]
Berghmans, Jan
[1
]
Van den Bulck, Eric
[1
]
机构:
[1] Katholieke Univ Leuven, Dept Mech Engn, B-3001 Leuven, Belgium
[2] Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England
[3] Adinex NV, B-2200 Noorderwijk, Belgium
来源:
关键词:
Critical ignition temperature;
Oxygen rich;
Hot oven;
Hot plate;
O-2/CO2;
ambient;
Kinetic parameters;
LOW-TEMPERATURE OXIDATION;
SMOLDERING COMBUSTION;
HOT SURFACE;
LAYER;
KINETICS;
CHARS;
D O I:
10.1016/j.fuel.2015.07.050
中图分类号:
TE [石油、天然气工业];
TK [能源与动力工程];
学科分类号:
0807 ;
0820 ;
摘要:
For the oxy-coal combustion, the accumulation of coal dust in the system has a fire risk of self-ignition. Therefore, understanding the ignition dynamics of coal dust deposits in oxygen-enriched environment is essential for the prevention of fire and dust explosion. In this work, both hot-oven and hot-plate tests were conducted to study the self-ignition behaviour of coal dusts in O-2/CO2 ambient with O-2 mole fraction from 21% to 50%. Three coal dusts: Indonesian Sebuku coal, Pittsburgh No. 8 coal and South African coal were tested with different sizes. Experimental results revealed that the self-ignition risk increased significantly with the increasing O-2 mole fraction: reducing both the critical ignition temperature (10 degrees C in hot-oven test and 40 degrees C in hot-plate test) and the ignition delay time. Comparatively, the inhibiting effect of CO2 was found to be small for self-ignition. In addition, a modified Frank-Kamenetzkii analysis was proposed to explain all measured critical ignition temperatures, and the genetic algorithm was used to determine kinetic parameters of the one-step global reaction. The analysis showed that as the coal maturity/rank increased, both the self-ignition risk and the sensitivity to oxidation decreased, along with the decreasing apparent activation energy and pre-exponential factor. Such trend did not change with the ambient oxygen condition for all three coal dusts. These results improve our understanding of the self-ignition behaviour and the fire risk of coal dust in the oxy-fuel combustion system. (C) 2015 Published by Elsevier Ltd.
引用
收藏
页码:245 / 254
页数:10
相关论文
共 50 条