Uniform non-amenability

被引:23
作者
Arzhantseva, GN
Burillo, J
Lustig, M
Reeves, L
Short, H
Ventura, E
机构
[1] Univ Aix Marseille 1, CNRS, UMR 6632, LATP,CMI, F-13453 Marseille 13, France
[2] Univ Geneva, CH-1211 Geneva, Switzerland
[3] Univ Politecn Cataluna, Castelldefels 08860, Barcelona, Spain
[4] Univ Aix Marseille 3, CNRS, UMR 6632, LATP, F-13397 Marseille, France
[5] Univ Politecn Catalunyna, Manresa 08240, Barcelona, Spain
关键词
amenability; Folner sets; Cayley graph;
D O I
10.1016/j.aim.2004.10.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any finitely generated group G an invariant Fol G >= 0 is introduced which measures the "amount of non-amenability" of G. If G is amenable, then Fol G = 0. If Fol G > 0, we call G uniformly non-amenable. We study the basic properties of this invariant; for example, its behaviour when passing to subgroups and quotients of G. We prove that the following classes of groups are uniformly non-amenable: non-abelian free groups, non-elementary word-hyperbolic groups, large groups, free Burnside groups of large enough odd exponent, and groups acting acylindrically on a tree. Uniform non-amenability implies uniform exponential growth. We also exhibit a family of non-amenable groups (in particular including all non-solvable Baumslag-Solitar groups) which are not uniformly non-amenable, that is, they satisfy Fol G = 0. Finally, we derive a relation between our uniform Folner constant and the uniform Kazhdan constant with respect to the left regular representation of G. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:499 / 522
页数:24
相关论文
共 32 条
[1]  
[Anonymous], VAN NOSTRAND MATH ST
[2]  
[Anonymous], 1984, IZV AKAD NAUK SSSR
[3]  
ARZHANTSEVA G, IN PRESS J GROUP THE
[4]  
Bekka MEB, 2000, J LIE THEORY, V10, P93
[5]  
BURGER M, 1991, J REINE ANGEW MATH, V413, P36
[6]   PROPERTY (T) AND (A)OVER-BAR-2 GROUPS [J].
CARTWRIGHT, DI ;
MLOTKOWSKI, W ;
STEGER, T .
ANNALES DE L INSTITUT FOURIER, 1994, 44 (01) :213-248
[7]   The space of finitely generated groups [J].
Champetier, C .
TOPOLOGY, 2000, 39 (04) :657-680
[8]  
Colin de Verdi~ere Y., 1998, SPECTRES GRAPHES COU
[9]   Free products with amalgamation and HNN-extensions of uniformly exponential growth [J].
de la Harpe, P ;
Bucher, M .
MATHEMATICAL NOTES, 2000, 67 (5-6) :686-689
[10]  
DELAHARPE P, 1999, P STEKLOV I MATH, V1, P57