Unified Inference for an AR Process Regardless of Finite or Infinite Variance GARCH Errors

被引:9
作者
Huang, Haitao [1 ]
Leng, Xuan [2 ]
Liu, Xiaohui [3 ]
Peng, Liang [1 ]
机构
[1] Georgia State Univ, Atlanta, GA 30303 USA
[2] Xiamen Univ, Xiamen, Fujian, Peoples R China
[3] Jiangxi Univ Finance & Econ, Nanchang, Jiangxi, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
autoregressive process; empirical likelihood; GARCH; unified inference; unit root test; MAXIMUM-LIKELIHOOD-ESTIMATION; UNIT-ROOT TESTS; EMPIRICAL LIKELIHOOD; TIME-SERIES; LIMIT THEORY; MODELS; TAIL;
D O I
10.1093/jjfinec/nbz015
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Statistical inference in finance often depends on certain moment conditions such as finite or infinite variance, yet it is practically challenging to disentangle these conditions. This article develops a class of unified unit root tests for AR(1) models and a weighted least squares estimator along with robust inference for a stationary AR(r) model regardless of finite or infinite variance GARCH errors. The inferential framework applies the empirical likelihood method to some weighted score equations without estimating the GARCH errors. In contrast to extant unit root tests relying on bootstrap or subsampling methods to approximate critical values, the proposed unit root tests can be easily implemented with critical values obtained directly from a chi-squared distribution using the Wilks theorem. Extensive simulation studies confirm the good finite sample performance of the proposed methods before we illustrate them empirically with financial ratios for stock return predictability and HKD/USD exchange rate returns.
引用
收藏
页码:425 / 470
页数:46
相关论文
共 42 条
  • [1] Regular variation of GARCH processes
    Basrak, B
    Davis, RA
    Mikosch, T
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 99 (01) : 95 - 115
  • [2] Billingsley P., 1999, CONVERGE PROBAB MEAS
  • [3] GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY
    BOLLERSLEV, T
    [J]. JOURNAL OF ECONOMETRICS, 1986, 31 (03) : 307 - 327
  • [4] Testing for unit roots in time series models with non-stationary volatility
    Cavaliere, Giuseppe
    Taylor, A. M. Robert
    [J]. JOURNAL OF ECONOMETRICS, 2007, 140 (02) : 919 - 947
  • [5] UNIT ROOT INFERENCE FOR NON-STATIONARY LINEAR PROCESSES DRIVEN BY INFINITE VARIANCE INNOVATIONS
    Cavaliere, Giuseppe
    Georgiev, Iliyan
    Taylor, A. M. Robert
    [J]. ECONOMETRIC THEORY, 2018, 34 (02) : 302 - 348
  • [6] SIEVE-BASED INFERENCE FOR INFINITE-VARIANCE LINEAR PROCESSES
    Cavaliere, Giuseppe
    Georgiev, Iliyan
    Taylor, A. M. Robert
    [J]. ANNALS OF STATISTICS, 2016, 44 (04) : 1467 - 1494
  • [7] HETEROSKEDASTIC TIME SERIES WITH A UNIT ROOT
    Cavaliere, Giuseppe
    Taylor, A. M. Robert
    [J]. ECONOMETRIC THEORY, 2009, 25 (05) : 1228 - 1276
  • [8] TOWARD A UNIFIED INTERVAL ESTIMATION OF AUTOREGRESSIONS
    Chan, Ngai Hang
    Li, Deyuan
    Peng, Liang
    [J]. ECONOMETRIC THEORY, 2012, 28 (03) : 705 - 717
  • [9] Chan NH, 2010, STAT SINICA, V20, P1363
  • [10] ON THE 1ST-ORDER AUTOREGRESSIVE PROCESS WITH INFINITE VARIANCE
    CHAN, NH
    TRAN, LT
    [J]. ECONOMETRIC THEORY, 1989, 5 (03) : 354 - 362