Giant photon gain in large-scale quantum dot-circuit QED systems

被引:17
作者
Agarwalla, Bijay Kumar [1 ]
Kulkarni, Manas [2 ]
Mukamel, Shaul [3 ,4 ]
Segal, Dvira [1 ]
机构
[1] Univ Toronto, Dept Chem, Ctr Quantum Informat & Quantum Control, Chem Phys Theory Grp, 80 St George St, Toronto, ON M5S 3H6, Canada
[2] Tata Inst Fundamental Res, Int Ctr Theoret Sci, Bangalore 560012, Karnataka, India
[3] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
[4] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
SUPERCONDUCTING CIRCUITS; SIMULATION; CAVITY; ELECTRODYNAMICS; SPIN; GAS;
D O I
10.1103/PhysRevB.94.121305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Motivated by recent experiments on the generation of coherent light in engineered hybrid quantum systems, we investigate gain in a microwave photonic cavity coupled to quantum dot structures and develop concrete directions for achieving a giant amplification in photon transmission. We propose two architectures for scaling up the electronic gain medium: (i) N-double quantum dot systems and (ii) M-quantum dots arranged in series akin to a quantum cascade laser setup. In both setups, the fermionic reservoirs are voltage biased, and the quantum dots are coupled to a single-mode cavity. Optical amplification is explained based on a sum rule for the transmission function, and it is determined by an intricate competition between two different processes: charge-density response in the gain medium and cavity losses to input and output ports. The same design principle is also responsible for the corresponding giant amplification in other photonic observables, mean photon number, and emission spectrum, thereby realizing a quantum device that behaves as a giant microwave amplifier.
引用
收藏
页数:5
相关论文
共 47 条
[1]   Tunable photonic cavity coupled to a voltage-biased double quantum dot system: Diagrammatic nonequilibrium Green's function approach [J].
Agarwalla, Bijay Kumar ;
Kulkarni, Manas ;
Mukamel, Shaul ;
Segal, Dvira .
PHYSICAL REVIEW B, 2016, 94 (03)
[2]   Photon-Mediated Interactions: A Scalable Tool to Create and Sustain Entangled States of N Atoms [J].
Aron, Camille ;
Kulkarni, Manas ;
Tuereci, Hakan E. .
PHYSICAL REVIEW X, 2016, 6 (01)
[3]   Steady-state entanglement of spatially separated qubits via quantum bath engineering [J].
Aron, Camille ;
Kulkarni, Manas ;
Tuereci, Hakan E. .
PHYSICAL REVIEW A, 2014, 90 (06)
[4]   Single-artificial-atom lasing using a voltage-biased superconducting charge qubit [J].
Ashhab, S. ;
Johansson, J. R. ;
Zagoskin, A. M. ;
Nori, Franco .
NEW JOURNAL OF PHYSICS, 2009, 11
[5]   Dicke quantum phase transition with a superfluid gas in an optical cavity [J].
Baumann, Kristian ;
Guerlin, Christine ;
Brennecke, Ferdinand ;
Esslinger, Tilman .
NATURE, 2010, 464 (7293) :1301-U1
[6]   Nonlocal transport properties of nanoscale conductor-microwave cavity systems [J].
Bergenfeldt, C. ;
Samuelsson, P. .
PHYSICAL REVIEW B, 2013, 87 (19)
[7]   Microwave quantum optics and electron transport through a metallic dot strongly coupled to a transmission line cavity [J].
Bergenfeldt, C. ;
Samuelsson, P. .
PHYSICAL REVIEW B, 2012, 85 (04)
[8]   Cavity Photons as a Probe for Charge Relaxation Resistance and Photon Emission in a Quantum Dot Coupled to Normal and Superconducting Continua [J].
Bruhat, L. E. ;
Viennot, J. J. ;
Dartiailh, M. C. ;
Desjardins, M. M. ;
Kontos, T. ;
Cottet, A. .
PHYSICAL REVIEW X, 2016, 6 (02)
[9]   Quantum Simulators [J].
Buluta, Iulia ;
Nori, Franco .
SCIENCE, 2009, 326 (5949) :108-111
[10]   Introduction to quantum noise, measurement, and amplification [J].
Clerk, A. A. ;
Devoret, M. H. ;
Girvin, S. M. ;
Marquardt, Florian ;
Schoelkopf, R. J. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1155-1208