Al2O3/poly(ethylene terephthalate) composite separator for high-safety lithium-ion batteries

被引:50
|
作者
Li, Weibiao [1 ,2 ]
Li, Xiaozhe [2 ]
Yuan, Anbao [1 ]
Xie, Xiaohua [2 ]
Xia, Baojia [2 ]
机构
[1] Shanghai Univ, Dept Chem, Coll Sci, Shanghai 200444, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 201800, Peoples R China
基金
中国国家自然科学基金;
关键词
Separator; Lithium-ion battery; Cubic Al2O3 nanoparticles; Thermostability; Electrochemical performance; POLYETHYLENE SEPARATOR; THERMAL-STABILITY; COATING LAYER; PERFORMANCE; CHALLENGES;
D O I
10.1007/s11581-016-1752-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Separators have garnered substantial attention from researchers and developers in regard to their crucial role in the safety of lithium-ion batteries. In this study, a composite separator was prepared by coating cubic Al2O3 nanoparticles on non-woven poly(ethylene terephthalate) (PET) via a simple dip-coating process. The basic properties of the Al2O3-coated PET non-woven composite separator were characterized by scanning electron microscopy and other specific measurements in respect to its morphology, porosity, electrolyte wettability, and thermal shrinkage as well as its application in lithium-ion batteries. We found that the composite separator has outstanding thermostability, which may improve battery safety. Additionally, by comparison against the commercial Celgard 2500 separator, the proposed composite separator exhibits higher porosity, superior electrolyte wettability, and higher ionic conductivity. More importantly, the lithium-ion battery assembled with this composite separator shows better electrochemical performance (e.g., cycling and discharge C-rate capability) compared to that with the Celgard 2500 separator. The results of this study represent a simple approach to preparing high-performance separators that can be used to enhance the safety of lithium-ion batteries.
引用
收藏
页码:2143 / 2149
页数:7
相关论文
共 50 条
  • [31] Electrospun Core-Shell Nanofiber as Separator for Lithium-Ion Batteries with High Performance and Improved Safety
    Liang, Zheng
    Zhao, Yun
    Li, Yanxi
    ENERGIES, 2019, 12 (17)
  • [32] Bifunctional separator with high thermal stability and lithium dendrite inhibition toward high safety lithium-ion batteries
    Su, Miaomiao
    Chen, Yifu
    Wang, Suqing
    Wang, Haihui
    CHINESE CHEMICAL LETTERS, 2023, 34 (05)
  • [33] Preparation and electrochemical performance of ZrO2 nanoparticle-embedded nonwoven composite separator for lithium-ion batteries
    Xiao, Wei
    Gong, Yaqun
    Wang, Hong
    Zhao, Lina
    Liu, Jianguo
    Yan, Chuanwei
    CERAMICS INTERNATIONAL, 2015, 41 (10) : 14223 - 14229
  • [34] Cross-linked fibrous composite separator for high performance lithium-ion batteries with enhanced safety
    Park, Sae-Rom
    Jung, Yun-Chae
    Shin, Won-Kyung
    Ahn, Kyoung Ho
    Lee, Chul Haeng
    Kim, Dong-Won
    JOURNAL OF MEMBRANE SCIENCE, 2017, 527 : 129 - 136
  • [35] Evaporation-induced self-assembled silica colloidal particle-assisted nanoporous structural evolution of poly(ethylene terephthalate) nonwoven composite separators for high-safety/high-rate lithium-ion batteries
    Lee, Jung-Ran
    Won, Ji-Hye
    Kim, Jong Hun
    Kim, Ki Jae
    Lee, Sang-Young
    JOURNAL OF POWER SOURCES, 2012, 216 : 42 - 47
  • [36] Poly(aryl ether ketone) Composite Membrane as a High-Performance Lithium-Ion Batteries Separator
    Xie, Min
    Yin, Mingying
    Nie, Guangdi
    Wang, Jun
    Wang, Ce
    Chao, Danming
    Liu, Xincai
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2016, 54 (17) : 2714 - 2721
  • [37] A Magnesium Carbonate Hydroxide Nanofiber/Poly(Vinylidene Fluoride) Composite Membrane for High-Rate and High-Safety Lithium-Ion Batteries
    Luo, Lin
    Ma, Kang
    Song, Xin
    Zhao, Yuling
    Tang, Jie
    Zheng, Zongmin
    Zhang, Jianmin
    POLYMERS, 2023, 15 (20)
  • [38] A high-temperature stable composite polyurethane separator coated Al2O3 particles for lithium ion battery
    Cheng, Chuyun
    Liu, Hangzhong
    Chuying, Ouyang
    Hu, Naigen
    Zha, Guojun
    Hou, Haoqing
    COMPOSITES COMMUNICATIONS, 2022, 33
  • [39] Inorganic Layer Coated Polyolefin Separator with High Performances for Lithium-ion Batteries
    Zhao Li-Li
    Zhu Yong-Ping
    Wang Xue-Ying
    JOURNAL OF INORGANIC MATERIALS, 2013, 28 (12) : 1296 - 1300
  • [40] Facile fabrication of nanoporous composite separator membranes for lithium-ion batteries: poly(methyl methacrylate) colloidal particles-embedded nonwoven poly(ethylene terephthalate)
    Cho, Ju-Hyun
    Park, Jang-Hoon
    Kim, Jong Hun
    Lee, Sang-Young
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (22) : 8192 - 8198