FLAME GPU: Complex System Simulation Framework

被引:10
|
作者
Richmond, Paul [1 ]
Chimeh, Mozhgan K. [1 ]
机构
[1] Univ Sheffield, Dept Comp Sci, 211 Portobello, Sheffield S1 4DP, S Yorkshire, England
来源
2017 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS) | 2017年
基金
英国工程与自然科学研究理事会;
关键词
GPU; ABM; Complex System Simulation; Agent Based Modelling;
D O I
10.1109/HPCS.2017.12
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
FLAME GPU is an agent based simulation framework that utilises the parallel architecture of Graphic Processing Unit (GPU) to enable real time model interaction and visualisation. In this paper, we provide an overview of the features of FLAME GPU and demonstrate its efficiency as a parallel agent based simulation platform. FLAME GPU abstracts the complexity of the GPU architecture from the users by offering a high level modelling syntax based on a formal state machine representation. A flocking model is presented showing how a simple multi-agent system is modelled.
引用
收藏
页码:11 / 17
页数:7
相关论文
共 50 条
  • [41] Optimized GPU Framework for Ultrasound Color Flow Imaging
    Fan, Zhengjuan
    Shi, Dan
    Liu, Dong C.
    2010 4TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICAL ENGINEERING (ICBBE 2010), 2010,
  • [42] Accelerating MapReduce framework on multi-GPU systems
    Jiang, Hai
    Chen, Yi
    Qiao, Zhi
    Li, Kuan-Ching
    Ro, WonWoo
    Gaudiot, Jean-Luc
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2014, 17 (02): : 293 - 301
  • [43] GPU Framework for Change Detection in Multitemporal Hyperspectral Images
    Javier López-Fandiño
    Dora B. Heras
    Francisco Argüello
    Mauro Dalla Mura
    International Journal of Parallel Programming, 2019, 47 : 272 - 292
  • [44] Accelerating MapReduce framework on multi-GPU systems
    Hai Jiang
    Yi Chen
    Zhi Qiao
    Kuan-Ching Li
    WonWoo Ro
    Jean-Luc Gaudiot
    Cluster Computing, 2014, 17 : 293 - 301
  • [45] An Efficient GPU Framework for Parallelizing Combinatorial Optimization Heuristics
    Rashid, Mohammad Harun
    McAndrew, Ian
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND COMMUNICATION ENGINEERING (ICACCE-2020), 2020,
  • [46] GRAM: A Framework for Dynamically Mixing Precisions in GPU Applications
    Nhut-Minh Ho
    De Silva, Himeshi
    Wong, Weng-Fai
    ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2021, 18 (02)
  • [47] GPU Framework for Change Detection in Multitemporal Hyperspectral Images
    Lopez-Fandino, Javier
    Heras, Dora B.
    Argueello, Francisco
    Dalla Mura, Mauro
    INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2019, 47 (02) : 272 - 292
  • [48] A Multimedia Parallel Processing Approach on GPU MapReduce Framework
    Chen, Shih-Yeh
    Lai, Chin-Feng
    Hwang, Ren-Hung
    Chao, Han-Chieh
    Huang, Yueh-Min
    2014 7TH INTERNATIONAL CONFERENCE ON UBI-MEDIA COMPUTING AND WORKSHOPS (UMEDIA), 2014, : 154 - 159
  • [49] VersaPipe: A Versatile Programming Framework for Pipelined Computing on GPU
    Zheng, Zhen
    Oh, Chanyoung
    Zhai, Jidong
    Shen, Xipeng
    Yi, Youngmin
    Chen, Wenguang
    50TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2017, : 587 - 599
  • [50] Performance Portability of a GPU Enabled Factorization with the DAGuE Framework
    Bosilca, George
    Bouteiller, Aurelien
    Herault, Thomas
    Lemarinier, Pierre
    Saengpatsa, Narapat Ohm
    Tomov, Stanimire
    Dongarra, Jack J.
    2011 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER), 2011, : 395 - 402