High-order finite difference methods, multidimensional linear problems, and curvilinear coordinates

被引:103
|
作者
Nordström, J [1 ]
Carpenter, MH
机构
[1] Swedish Def Res Agcy, Aerodynam Div, Comp Aerodynam Dept, Uppsala, Sweden
[2] Univ Uppsala, Dept Sci Comp Informat Technol, Uppsala, Sweden
[3] NASA, Langley Res Ctr, Computat Modeling & Simulat Branch, Hampton, VA 23681 USA
关键词
D O I
10.1006/jcph.2001.6864
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Boundary and interface conditions are derived for high-order finite difference methods applied to multidimensional linear problems in curvilinear coordinates. Difficulties presented by the combination of multiple dimensions and varying coefficients are analyzed. In particular, problems related to nondiagonal norms, a varying Jacobian, and varying and vanishing wave speeds are considered. The boundary and interface conditions lead to conservative schemes and strict and strong stability provided that certain metric conditions are met. (C) 2001 Academic Press.
引用
收藏
页码:149 / 174
页数:26
相关论文
共 50 条
  • [1] On the accuracy of high-order finite elements in curvilinear coordinates
    Thomas, SJ
    Cyr, AS
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 822 - 828
  • [2] Implementation of a high-order compact finite-difference lattice Boltzmann method in generalized curvilinear coordinates
    Hejranfar, Kazem
    Ezzatneshan, Eslam
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 267 : 28 - 49
  • [3] On the spurious solutions in the high-order finite difference methods for eigenvalue problems
    Zhao, S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (49-52) : 5031 - 5046
  • [4] HIGH-ORDER CURVILINEAR FINITE ELEMENT METHODS FOR LAGRANGIAN HYDRODYNAMICS
    Dobrev, Veselin A.
    Kolev, Tzanio V.
    Rieben, Robert N.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (05): : B606 - B641
  • [5] High-order weighted essentially nonoscillatory finite-difference formulation of the lattice Boltzmann method in generalized curvilinear coordinates
    Hejranfar, Kazem
    Saadat, Mohammad Hossein
    Taheri, Sina
    PHYSICAL REVIEW E, 2017, 95 (02)
  • [6] Numerical Solution of Second-Order Linear Multidimensional Hyperbolic Telegraph Equation Using High-Order Compact Finite Difference Methods
    Hashemi, Azam Sadat
    Heydari, Mohammad
    Loghmani, Ghasem Barid
    IRANIAN JOURNAL OF SCIENCE, 2024, 48 (05) : 1211 - 1241
  • [7] High-order, finite-volume methods in mapped coordinates
    Colella, P.
    Dorr, M. R.
    Hittinger, J. A. F.
    Martin, D. F.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (08) : 2952 - 2976
  • [8] Numerical behavior of high-order finite difference methods
    Olsson, Pelle
    Journal of Scientific Computing, 1994, 9 (04) : 445 - 466
  • [9] High-order finite difference methods for the Helmholtz equation
    Singer, I
    Turkel, E
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1998, 163 (1-4) : 343 - 358
  • [10] A HIGH-ORDER FINITE DIFFERENCE WENO SCHEME FOR IDEAL MAGNETOHYDRODYNAMICS ON CURVILINEAR MESHES
    Christlieb, Andrew J.
    Feng, Xiao
    Jiang, Yan
    Tang, Qi
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (04): : A2631 - A2666