Grid-Based Clustering Using Boundary Detection

被引:13
作者
Du, Mingjing [1 ]
Wu, Fuyu [1 ]
机构
[1] Jiangsu Normal Univ, Sch Comp Sci & Technol, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
grid-based clustering; density-based clustering; boundary detection; DENSITY;
D O I
10.3390/e24111606
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Clustering can be divided into five categories: partitioning, hierarchical, model-based, density-based, and grid-based algorithms. Among them, grid-based clustering is highly efficient in handling spatial data. However, the traditional grid-based clustering algorithms still face many problems: (1) Parameter tuning: density thresholds are difficult to adjust; (2) Data challenge: clusters with overlapping regions and varying densities are not well handled. We propose a new grid-based clustering algorithm named GCBD that can solve the above problems. Firstly, the density estimation of nodes is defined using the standard grid structure. Secondly, GCBD uses an iterative boundary detection strategy to distinguish core nodes from boundary nodes. Finally, two clustering strategies are combined to group core nodes and assign boundary nodes. Experiments on 18 datasets demonstrate that the proposed algorithm outperforms 6 grid-based competitors.
引用
收藏
页数:19
相关论文
共 33 条
[1]  
Agrawal R., 1998, SIGMOD Record, V27, P94, DOI 10.1145/276305.276314
[2]   Border-Peeling Clustering [J].
Averbuch-Elor, Hadar ;
Bar, Nadav ;
Cohen-Or, Daniel .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (07) :1791-1797
[3]  
Banerjee A., 2005, P 11 ACM SIGKDD INT, P532
[4]   FEHCA: A Fault-Tolerant Energy-Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks [J].
Choudhary, Ankur ;
Kumar, Santosh ;
Gupta, Sharad ;
Gong, Mingwei ;
Mahanti, Aniket .
ENERGIES, 2021, 14 (13)
[5]   An innovative framework for supporting big atmospheric data analytics via clustering-based spatio-temporal analysis [J].
Cuzzocrea, Alfredo ;
Gaber, Mohamed Medhat ;
Fadda, Edoardo ;
Grasso, Giorgio Mario .
JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2019, 10 (09) :3383-3398
[6]   M3W: Multistep Three-Way Clustering [J].
Du, Mingjing ;
Zhao, Jingqi ;
Sun, Jiarui ;
Dong, Yongquan .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) :5627-5640
[7]   ROBP a robust border-peeling clustering using Cauchy kernel [J].
Du, Mingjing ;
Wang, Ru ;
Ji, Ru ;
Wang, Xia ;
Dong, Yongquan .
INFORMATION SCIENCES, 2021, 571 :375-400
[8]   Cluster Analysis of Financial Strategies of Companies [J].
Dzuba, Sergey ;
Krylov, Denis .
MATHEMATICS, 2021, 9 (24)
[9]   A METHOD FOR COMPARING 2 HIERARCHICAL CLUSTERINGS [J].
FOWLKES, EB ;
MALLOWS, CL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1983, 78 (383) :553-569
[10]   Block-Matching Fuzzy C-Means clustering algorithm for segmentation of color images degraded with Gaussian noise [J].
Gamino-Sanchez, Fernando ;
Hernandez-Gutierrez, Isabel V. ;
Rosales-Silva, Alberto J. ;
Gallegos-Funes, Francisco J. ;
Mujica-Vargas, Dante ;
Ramos-Diaz, Eduardo ;
Carvajal-Gamez, Blanca E. ;
Kinani, Jean Marie V. .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2018, 73 :31-49