VECTOR DECOMPOSITION OF FINITE ROTATIONS

被引:24
作者
Mladenova, Clementina D. [1 ]
Mladenov, Ivailo M. [2 ]
机构
[1] Bulgarian Acad Sci, Inst Mech, BU-1113 Sofia, Bulgaria
[2] Bulgarian Acad Sci, Inst Biophys, BU-1113 Sofia, Bulgaria
关键词
rigid body motion; three-dimensional rotation group; Fedorov's-Gibbs'-Rodrigues' vector;
D O I
10.1016/S0034-4877(11)60030-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
On the basis of intrinsic properties of the vector parameterization of rotational motions this work presents an explicit solution of the problem of decomposition of any finite rotation into a product of three successive finite rotations about prescribed axes.
引用
收藏
页码:107 / 117
页数:11
相关论文
共 21 条
[1]  
Altmann S. L., 2005, Rotations, Quaternions, and Double Groups
[2]   On representations and parameterizations of motion [J].
Borri, M ;
Trainelli, L ;
Bottasso, CL .
MULTIBODY SYSTEM DYNAMICS, 2000, 4 (2-3) :129-193
[3]   Relation between rigid-body motion, isotropic cones, and spinors [J].
Boya, LJ ;
Sudarshan, ECG .
FOUNDATIONS OF PHYSICS LETTERS, 2005, 18 (01) :53-63
[4]   APPLICATIONS OF ALGEBRA OF ROTATIONS IN ROBOT KINEMATICS [J].
CHEN, CH .
MECHANISM AND MACHINE THEORY, 1987, 22 (01) :77-83
[5]   ROTATIONS ABOUT NONORTHOGONAL AXES [J].
DAVENPORT, PB .
AIAA JOURNAL, 1973, 11 (06) :853-857
[6]  
FEDOROV F, 1979, LORENTZ GROUPS
[7]   RODRIGUES,OLINDE PAPER OF 1840 ON TRANSFORMATION GROUPS [J].
GRAY, JJ .
ARCHIVE FOR HISTORY OF EXACT SCIENCES, 1980, 21 (04) :375-385
[8]   ROTATION ANGLES [J].
HASSENPFLUG, WC .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1993, 105 (01) :111-124
[9]   COMPUTATIONAL ASPECTS OF VECTOR-LIKE PARAMETRIZATION OF 3-DIMENSIONAL FINITE ROTATIONS [J].
IBRAHIMBEGOVIC, A ;
FREY, F ;
KOZAR, I .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1995, 38 (21) :3653-3673
[10]  
JUNKINS JL, 1993, J ASTRONAUT SCI, V41, P531