Net energy analysis for concentrated solar power plants in northern Chile

被引:31
作者
Larrain, Teresita [1 ]
Escobar, Rodrigo [1 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Ingn Mecan & Met, Santiago, Chile
关键词
Net energy analysis; Energy return on investment; Solar power plant; Concentrated solar power; DIRECT STEAM-GENERATION; PARABOLIC TROUGHS; GAS;
D O I
10.1016/j.renene.2011.10.015
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Chilean energy policy goals attempts to promote efficiency and sustainability in the energy system. These objectives have been considered in recent modifications to the electricity generation laws by establishing that generation companies must reach a quota of up to a 10% from renewable energy sources by 2024. Concentrated solar power (CSP) is an interesting alternative to help achieve those objectives, as it is estimated that northern Chile has high radiation levels, coupled with the high values of the local clearness index and flat land availability. However, from the sustainability point of view it seems necessary to assess if a CSP plant is effectively an energy source. Here we propose a hybrid solar power plant lifecycle model which through a net energy analysis obtains and analyzes the plant energy sustainability attributes such as net energy, energy return over investment and energy payback time. The stages of construction, operation, maintenance and decommissioning are considered in the lifecycle analysis. The model is then applied in order to determine good locations where to install a CSP plant in the Chilean Atacama Desert. Monthly means of solar radiation are used in order to estimate the solar fraction for a 100MW direct steam generation parabolic trough collector plant. The results indicate that solar power plants are effectively a net energy source for the analyzed locations, and that higher energy costs are related to the fossil fuel backup lifecycle. A relation is established between yearly radiation, energy return over investment and energy payback time. It is estimated that the net energy analysis is a useful tool for determining under which conditions a power plant becomes a net energy source and therefore a more convenient option from the sustainability point of view, and thus can be utilized in order to define best geographical locations and operation conditions for different renewable energy sources. The sustainability attributes are greatly enhanced when considering a solar-only operation mode, which highlights the advantages of using that configuration, and presents a case for the use of thermal energy storage systems rather than fossil fuel hybridization if a constant or dispatchable energy profile is required. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:123 / 133
页数:11
相关论文
共 50 条
  • [21] Mapping suitability areas for concentrated solar power plants using remote sensing data
    Omitaomu, Olufemi A.
    Singh, Nagendra
    Bhaduri, Budhendra L.
    JOURNAL OF APPLIED REMOTE SENSING, 2015, 9
  • [22] Brayton technology for Concentrated Solar Power plants: Comparative analysis of central tower plants and parabolic dish farms
    Garcia-Ferrero, J.
    Merchan, R. P.
    Santos, M. J.
    Medina, A.
    Calvo Hernandez, A.
    ENERGY CONVERSION AND MANAGEMENT, 2022, 271
  • [23] Calcium looping as chemical energy storage in concentrated solar power plants: Carbonator modelling and configuration assessment
    Bailera, Manuel
    Lisbona, Pilar
    Romeo, Luis M.
    Diez, Luis I.
    APPLIED THERMAL ENGINEERING, 2020, 172
  • [24] Study of Rock Suitability for High Temperature Thermal Energy Storage in Concentrated Solar Tower Power Plants
    Jemmal, Yousra
    Zari, Nadia
    Maaroufi, Mohamed
    PROCEEDINGS OF 2015 3RD IEEE INTERNATIONAL RENEWABLE AND SUSTAINABLE ENERGY CONFERENCE (IRSEC'15), 2015, : 161 - 166
  • [25] Integrated analysis of dispatchable concentrated solar power
    Tomaschek, J.
    Telsnig, T.
    Fahl, U.
    Eltrop, L.
    INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS, SOLARPACES 2014, 2015, 69 : 1711 - 1721
  • [26] Parametric analysis and optimization of a latent heat thermal energy storage system for concentrated solar power plants under realistic operating conditions
    Tiwari, Vivek
    Rai, Aakash C.
    Srinivasan, P.
    RENEWABLE ENERGY, 2021, 174 : 305 - 319
  • [27] Thermo-economic analysis of steam accumulation and solid thermal energy storage in direct steam generation concentrated solar power plants
    Kindi, Abdullah A. Al
    Sapin, Paul
    Pantaleo, Antonio M.
    Wang, Kai
    Markides, Christos N.
    ENERGY CONVERSION AND MANAGEMENT, 2022, 274
  • [28] Progress in Concentrated Solar Power, Photovoltaics, and Integrated Power Plants Towards Expanding the Introduction of Renewable Energy in the Asia/Pacific Region
    Gokon N.
    Current Sustainable/Renewable Energy Reports, 2023, 10 (04): : 250 - 263
  • [29] Exergy and exergoeconomic analysis of sustainable direct steam generation solar power plants
    Elsafi, Amin M.
    ENERGY CONVERSION AND MANAGEMENT, 2015, 103 : 338 - 347
  • [30] Multicycle activity of natural CaCO3 minerals for thermochemical energy storage in Concentrated Solar Power plants
    Benitez-Guerrero, Monica
    Manuel Valverde, Jose
    Sanchez-Jimenez, Pedro E.
    Perejon, Antonio
    Perez-Maqueda, Luis A.
    SOLAR ENERGY, 2017, 153 : 188 - 199