Soliton Gases and Generalized Hydrodynamics

被引:157
作者
Doyon, Benjamin [1 ]
Yoshimura, Takato [1 ]
Caux, Jean-Sebastien [2 ,3 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Univ Amsterdam, Inst Theoret Phys Amsterdam, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[3] Univ Amsterdam, Delta Inst Theoret Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
关键词
KINETIC-EQUATION; FIELD-THEORY; SYSTEMS; DYNAMICS;
D O I
10.1103/PhysRevLett.120.045301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the equations of generalized hydrodynamics (GHD), a hydrodynamic theory for integrable quantum systems at the Euler scale, emerge in full generality in a family of classical gases, which generalize the gas of hard rods. In this family, the particles, upon colliding, jump forward or backward by a distance that depends on their velocities, reminiscent of classical soliton scattering. This provides a "molecular dynamics" for GHD: a numerical solver which is efficient, flexible, and which applies to the presence of external force fields. GHD also describes the hydrodynamics of classical soliton gases. We identify the GHD of any quantum model with that of the gas of its solitonlike wave packets, thus providing a remarkable quantum-classical equivalence. The theory is directly applicable, for instance, to integrable quantum chains and to the Lieb-Liniger model realized in cold-atom experiments.
引用
收藏
页数:6
相关论文
共 44 条
[1]  
Abanov A.G., 2006, NATO SCI SERIES 2, V221
[2]   Conformal field theory out of equilibrium: a review [J].
Bernard, Denis ;
Doyon, Benjamin .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
[3]   A hydrodynamic approach to non-equilibrium conformal field theories [J].
Bernard, Denis ;
Doyon, Benjamin .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
[4]   Transport in Out-of-Equilibrium XXZ Chains: Exact Profiles of Charges and Currents [J].
Bertini, Bruno ;
Collura, Mario ;
De Nardis, Jacopo ;
Fagotti, Maurizio .
PHYSICAL REVIEW LETTERS, 2016, 117 (20)
[5]   Nonlinear quantum shock waves in fractional quantum hall edge states [J].
Bettelheim, E. ;
Abanov, Alexander G. ;
Wiegmann, P. .
PHYSICAL REVIEW LETTERS, 2006, 97 (24)
[6]  
Bhaseen MJ, 2015, NAT PHYS, V11, P509, DOI [10.1038/nphys3320, 10.1038/NPHYS3220]
[7]   ONE-DIMENSIONAL HARD ROD CARICATURE OF HYDRODYNAMICS [J].
BOLDRIGHINI, C ;
DOBRUSHIN, RL ;
SUKHOV, YM .
JOURNAL OF STATISTICAL PHYSICS, 1983, 31 (03) :577-616
[8]   "Light-Cone" Dynamics After Quantum Quenches in Spin Chains [J].
Bonnes, Lars ;
Essler, Fabian H. L. ;
Lauchli, Andreas M. .
PHYSICAL REVIEW LETTERS, 2014, 113 (18)
[9]  
Bulchandani V. B., ARXIV170206146
[10]   Solvable Hydrodynamics of Quantum Integrable Systems [J].
Bulchandani, Vir B. ;
Vasseur, Romain ;
Karrasch, Christoph ;
Moore, Joel E. .
PHYSICAL REVIEW LETTERS, 2017, 119 (22)