Analytically Solvable Renormalization Group for the Many-Body Localization Transition

被引:111
作者
Goremykina, Anna [1 ,2 ]
Vasseur, Romain [3 ]
Serbyn, Maksym [2 ]
机构
[1] Univ Geneva, Dept Phys Theor, CH-1211 Geneva 4, Switzerland
[2] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[3] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
基金
瑞士国家科学基金会;
关键词
PHASE; SYSTEM;
D O I
10.1103/PhysRevLett.122.040601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a simple, exactly solvable strong-randomness renormalization group (RG) model for the many-body localization (MBL) transition in one dimension. Our approach relies on a family of RG flows parametrized by the asymmetry between thermal and localized phases. We identify the physical MBL transition in the limit of maximal asymmetry, reflecting the instability of MBL against rare thermal inclusions. We find a critical point that is localized with power-law distributed thermal inclusions. The typical size of critical inclusions remains finite at the transition, while the average size is logarithmically diverging. We propose a two-parameter scaling theory for the many-body localization transition that falls into the Kosterlitz-Thouless universality class, with the MBL phase corresponding to a stable line of fixed points with multifractal behavior.
引用
收藏
页数:6
相关论文
共 45 条
[1]  
Abanin D. A., ARXIV180411065
[2]   Anomalous Diffusion and Griffiths Effects Near the Many-Body Localization Transition [J].
Agarwal, Kartiek ;
Gopalakrishnan, Sarang ;
Knap, Michael ;
Mueller, Markus ;
Demler, Eugene .
PHYSICAL REVIEW LETTERS, 2015, 114 (16)
[3]   Many-body localization: An introduction and selected topics [J].
Alet, Fabien ;
Laflorencie, Nicolas .
COMPTES RENDUS PHYSIQUE, 2018, 19 (06) :498-525
[4]   Phase transition in a system of one-dimensional bosons with strong disorder [J].
Altman, E ;
Kafri, Y ;
Polkovnikov, A ;
Refael, G .
PHYSICAL REVIEW LETTERS, 2004, 93 (15) :150402-1
[5]   Universal Dynamics and Renormalization in Many-Body-Localized Systems [J].
Altman, Ehud ;
Vosk, Ronen .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 6, 2015, 6 :383-409
[6]   Quasiparticle lifetime in a finite system: A nonperturbative approach [J].
Altshuler, BL ;
Gefen, Y ;
Kamenev, A ;
Levitov, LS .
PHYSICAL REVIEW LETTERS, 1997, 78 (14) :2803-2806
[7]   Localization and topology protected quantum coherence at the edge of hot matter [J].
Bahri, Yasaman ;
Vosk, Ronen ;
Altman, Ehud ;
Vishwanath, Ashvin .
NATURE COMMUNICATIONS, 2015, 6
[8]   Absence of Diffusion in an Interacting System of Spinless Fermions on a One-Dimensional Disordered Lattice [J].
Bar Lev, Yevgeny ;
Cohen, Guy ;
Reichman, David R. .
PHYSICAL REVIEW LETTERS, 2015, 114 (10)
[9]   Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states [J].
Basko, DM ;
Aleiner, IL ;
Altshuler, BL .
ANNALS OF PHYSICS, 2006, 321 (05) :1126-1205
[10]   Area laws in a many-body localized state and its implications for topological order [J].
Bauer, Bela ;
Nayak, Chetan .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,