Thermotropic phase transition in soluble nanoscale lipid bilayers

被引:144
作者
Denisov, IG
McLean, MA
Shaw, AW
Grinkova, YV
Sligar, SG
机构
[1] Univ Illinois, Dept Biochem, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[3] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
关键词
D O I
10.1021/jp051385g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The role of lipid domain size and protein-lipid interfaces in the thermotropic phase transition of dipahnitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidy1choline (DMPC) bilayers in Nanodiscs was studied using small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and generalized polarization (GP) of the lipophilic probe Laurdan. Nanodiscs are water-soluble, monodisperse, self-assembled lipid bilayers encompassed by a helical membrane scaffold protein (MSP). MSPs of different lengths were used to define the diameter of the Nanodisc lipid bilayer from 76 to 108 A and the number of DPPC molecules from 164 to 335 per discoidal structure. In Nanodiscs of all sizes, the phase transitions were broader and shifted to higher temperatures relative to those observed in vesicle preparations. The size dependences of the transition enthalpies and structural parameters of Nanodiscs reveal the presence of a boundary lipid layer in contact with the scaffold protein encircling the perimeter of the disc. The thickness of this annular layer was estimated to be similar to 15 A, or two lipid molecules. SAXS was used to measure the lateral thermal expansion of Nanodiscs, and a steep decrease of bilayer thickness during the main lipid phase transition was observed. These results provide the basis for the quantitative understanding of cooperative phase transitions in membrane bilayers in confined geometries at the nanoscale.
引用
收藏
页码:15580 / 15588
页数:9
相关论文
共 97 条
[1]   PROTEIN-LIPID INTERACTIONS AND DIFFERENTIAL SCANNING CALORIMETRIC STUDIES OF BACTERIORHODOPSIN RECONSTITUTED LIPID-WATER SYSTEMS [J].
ALONSO, A ;
RESTALL, CJ ;
TURNER, M ;
GOMEZFERNANDEZ, JC ;
GONI, FM ;
CHAPMAN, D .
BIOCHIMICA ET BIOPHYSICA ACTA, 1982, 689 (02) :283-289
[2]  
[Anonymous], 1982, LIPID PROTEIN INTERA
[3]   Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment [J].
Baas, BJ ;
Denisov, IG ;
Sliger, SG .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2004, 430 (02) :218-228
[4]  
BACH D, 1984, TOPICS MOL STRUCTURA, V4, P1
[5]  
Bagatolli LA, 1999, PHOTOCHEM PHOTOBIOL, V70, P557, DOI 10.1562/0031-8655(1999)070<0557:AMFTIO>2.3.CO
[6]  
2
[7]   Reconstitution and imaging of a membrane protein in a nanometer-size phospholipid bilayer [J].
Bayburt, TH ;
Carlson, JW ;
Sligar, SG .
JOURNAL OF STRUCTURAL BIOLOGY, 1998, 123 (01) :37-44
[8]   Single molecule height measurements on a membrane protein in nanometer-scale phospholipid bilayer disks [J].
Bayburt, TH ;
Carlson, JW ;
Sligar, SG .
LANGMUIR, 2000, 16 (14) :5993-5997
[9]   Self-assembly of single integral membrane proteins into soluble nanoscale phospholipid bilayers [J].
Bayburt, TH ;
Sligar, SG .
PROTEIN SCIENCE, 2003, 12 (11) :2476-2481
[10]   Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins [J].
Bayburt, TH ;
Grinkova, YV ;
Sligar, SG .
NANO LETTERS, 2002, 2 (08) :853-856